• 제목/요약/키워드: Schottky-barrier

검색결과 312건 처리시간 0.031초

Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge

  • Kim, Hogyoung;Kim, Min Kyung;Kim, Yeon Jin
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.556-560
    • /
    • 2016
  • Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.

An Investigation of the Effect of Schotky Barrier-Height Enhancement Layer on MSMPD Dynamic Characteristics

  • Seo, Jong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권2호
    • /
    • pp.141-146
    • /
    • 2002
  • The effect of the wide-bandgap Schottky barrier enhancement cap layer on the performance of metal-semiconductor-metal photodetectors (MSMPD's) is presented. Judged by the dc characteristics, no considerable increase in recombination loss of carriers is resulted by the incorporation of the cap layer. However, about 45% of the detection efficiency is lost for the cap-layered MSMPD's even with a graded layer incorporated under pulse operation, and it was found to be due mainly to the capturing and slow release of the photocarriers at the heterointerface. The loss mechanism of the pulse detection efficiency is believed to be responsible for the intersymbol interference and the increased bit-error-rate (BER) observed in MSMPD's when used with a high bit rate pseudo-random-bit-stream (PRBS) data pattern.

PtSi-nSi 쇼트키 다이오드에서 이온 주입이 장벽높이의 변화에 미치는 영향 (The Effect of Ion Implantation on the Barrier Height in PtSi-nSi Schottky Diode)

  • 이용재;이문기;김봉렬
    • 대한전자공학회논문지
    • /
    • 제23권5호
    • /
    • pp.712-718
    • /
    • 1986
  • A shallow n+ layer of implanted phosphorus was used to lower the barrier height of PtSinSi schottky diodes. The reduction of barrier height of the forward turn-on voltages from 400mV to 180mV of the forward was followed by implantation of phosphorus at 35KeV with an ion dose of 8.0x10**12 atoms/cm\ulcornerand was activated at 925\ulcorner for 30min in dry O2. The test result showed that, as the ion-implanted dose increased, the forward turn-on voltage and reverse breakdown voltage were linearly decreased, but the saturation current and ideality factor(n) were linearly increased.

  • PDF

Short Channel SB-FETs의 Schottky 장벽 Overlapping (Schottky barrier overlapping in short channel SB-MOSFETs)

  • 최창용;조원주;정홍배;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

Metal-Oxide-Semiconductor 광전소자 (Metal-Oxide-Semiconductor Photoelectric Devices)

  • 강길모;윤주형;박윤창;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.276-281
    • /
    • 2014
  • A high-responsive Schottky device has been achieved by forming a thin metal deposition on a Si substrate. Two-different metals of Ni and Ag were used as a Schottky metal contact with a thickness about 10 nm. The barrier height formation between metal and Si determines the rectifying current profiles. Ag-embedding Schottky device gave an extremely high response of 17,881 at a wavelength of 900 nm. An efficient design of Schottky device may applied for photoelectric devices, including photodetectors and solar cells.

Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작과 그 특성 (Fabrication of a Pd/poly 3C-SiC Schottky diode hydrogensensor and its characteristics)

  • 정귀상;안정학
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.222-225
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C-SiC thin films grown on Si substrates with thermal oxide layer using APCVD. Pd/poly 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about 400 $^{\circ}$. The characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate, and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature $H_2$ sensor applications.

고온 화학센서용 다결정 3C-SiC 쇼트키 다이오드 제작과 그 특성 (Fabrication and characteristics of polycrystalline 3C-SiCSchottky diodes for high temperature chemical sensors)

  • 정귀상;안정학
    • 센서학회지
    • /
    • 제17권6호
    • /
    • pp.414-417
    • /
    • 2008
  • This paper describes the fabrication of a Pd/poly 3C-SiC Schottky diode and its characteristics, in which the poly 3C-SiC layer and Pd Schottky contact were deposited by using APCVD and sputter, respectively. Crystalline quality, uniformity, and preferred orientations of the Pd thin film were evaluated by SEM and XRD, respectively. Pd/poly 3C-SiC schottky diodes were fabricated and characterized by I-V and C-V measurements. Its electric current density Js and barrier height voltage were measured as $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices were operated until about $400^{\circ}C$. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

단결정 β-Ga2O3 반도체를 이용한 쇼트키 배리어 다이오드 제작 (Schottky Barrier Diode Fabricated on Single Crystal β-Ga2O3 Semiconductor)

  • 김현섭;조민기;차호영
    • 전자공학회논문지
    • /
    • 제54권1호
    • /
    • pp.21-25
    • /
    • 2017
  • 본 연구에서는 최근 차세대 전력 반도체로 관심을 받고 있는 단결정 ${\beta}-Ga_2O_3$를 이용한 쇼트키 배리어 다이오드 제작 및 특성 분석을 수행하였다. 쇼트키 배리어 다이오드는 Sn으로 도핑된 $2{\mu}m$ 두께의 저농도 N 타입 에피층 상에 Pt/Ti/Au 쇼트키 접합으로 제작되었으며 측정된 특성은 > 180 V의 항복전압, $1.26m{\Omega}{\cdot}cm^2$의 온 저항, 그리고 1 V의 순 방향 전압에서 $77A/cm^2$, 1.5 V에서 $473A/cm^2$의 순방향 전류 특성을 나타내었다. 본 연구를 통하여 단결정 ${\beta}-Ga_2O_3$의 전력반도체 활용 가능성을 확인 할 수 있었다.

필드 플레이트가 설계된 다이아몬드 쇼트키 장벽 다이오드 (Diamond Schottky Barrier Diodes With Field Plate)

  • 장해녕;강동원;하민우
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.659-665
    • /
    • 2017
  • Power semiconductor devices required the low on-resistance and high breakdown voltage. Wide band-gap materials opened a new technology of the power devices which promised a thin drift layer at an identical breakdown voltage. The diamond had the wide band-gap of 5.5 eV which induced the low power loss, high breakdown capability, low intrinsic carrier generation, and high operation temperature. We investigated the p-type pseudo-vertical diamond Schottky barrier diodes using a numerical simulation. The impact ionization rate was material to calculating the breakdown voltage. We revised the impact ionization rate of the diamond for adjusting the parallel-plane breakdown field at 10 MV/cm. Effects of the field plate on the breakdown voltage was also analyzed. A conventional diamond Schottky barrier diode without field plate exhibited the high forward current of 0.52 A/mm and low on-resistance of $1.71{\Omega}-mm$ at the forward voltage of 2 V. The simulated breakdown field of the conventional device was 13.3 MV/cm. The breakdown voltage of the conventional device and proposed devices with the $SiO_2$ passivation layer, anode field plate (AFP), and cathode field plate (CFP) was 680, 810, 810, and 1020 V, respectively. The AFP cannot alleviate the concentration of the electric field at the cathode edge. The CFP increased the breakdown voltage with evidences of the electric field and potential. However, we should consider the dielectric breakdown because the ideal breakdown field of the diamond is higher than that of the $SiO_2$, which is widely used as the passivation layer. The real breakdown voltage of the device with CFP decreased from 1020 to 565 V due to the dielectric breakdown.

고유전율 필드 플레이트를 적용한 β-Ga2O3 쇼트키 장벽 다이오드 (Vertical β-Ga2O3 Schottky Barrier Diodes with High-κ Dielectric Field Plate)

  • 박세림;이태희;김희철;김민영;문수영;이희재;변동욱;이건희;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.298-302
    • /
    • 2023
  • In this paper, we discussed the effect of field plate dielectric materials such as silicon dioxide (SiO2), aluminum oxide (Al2O3), and hafnium oxide (HfO2) on the breakdown characteristics of β-Ga2O3 Schottky barrier diodes (SBDs). The breakdown voltage (BV) of the SBDs with a field plate was higher than that of SBDs without a field plate. The higher dielectric constant of HfO2 contributed to the superior reduction in electric field concentration at the Schottky junction edge from 5.4 to 2.4 MV/cm. The SBDs with HfO2 field plate showed the highest BV of 720 V, and constant specific on-resistance (Ron,sp) of 5.6 mΩ·cm2, resulting in the highest Baliga's figure-of-merit (BFOM) of 92.0 MW/cm2. We also investigated the effect of dielectric thickness and field plate length on BV.