• 제목/요약/키워드: Schottky-barrier

검색결과 312건 처리시간 0.026초

Temperature Dependent Current Transport Mechanism in Graphene/Germanium Schottky Barrier Diode

  • Khurelbaatar, Zagarzusem;Kil, Yeon-Ho;Shim, Kyu-Hwan;Cho, Hyunjin;Kim, Myung-Jong;Kim, Yong-Tae;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.7-15
    • /
    • 2015
  • We have investigated electrical properties of graphene/Ge Schottky barrier diode (SBD) fabricated on Ge film epitaxially grown on Si substrate. When decreasing temperature, barrier height decreased and ideality factor increased, implying their strong temperature dependency. From the conventional Richardson plot, Richardson constant was much less than the theoretical value for n-type Ge. Assuming Gaussian distribution of Schottky barrier height with mean Schottky barrier height and standard deviation, Richardson constant extracted from the modified Richardson plot was comparable to the theoretical value for n-type Ge. Thus, the abnormal temperature dependent Schottky behavior of graphene/Ge SBD could be associated with a considerable deviation from the ideal thermionic emission caused by Schottky barrier inhomogeneities.

고온, 고전압 Ni/4H-SiC 및 Ni/6H-SiC Schottky 다이오드의 제작 및 전기적 특성 연구 (Fabrications and Characterization of High Temperature, High Voltage Ni/6H-SiC and Ni/4H-SiC Schottky Barrier Diodes)

  • 이호승;이상욱;신동혁;박현창;정웅
    • 전자공학회논문지D
    • /
    • 제35D권11호
    • /
    • pp.70-77
    • /
    • 1998
  • 본 논문에서는 nickel/silicon carbide(Ni/SiC) 접합에 의한 Schottky 다이오드를 제작하고, 그 전기적 특성을 조사하였다. Ni/4H-SiC의 경우, 산화막 모서리 단락을 하였을 때 상온에서 973V의 역방향 항복전압이 측정되었으며 이는 모서리 단락되지 않은 Schottky 다이오드의 역방향 항복전압 430V에 비해 매우 높았다. Ni/6H-SiC Schottky 다이오드의 경우, 산화막으로 모서리 단락시켰을 때와 시키지 않았을 때의 역방향 항복전압은 각각, 920V와 160V 였다. 고온에서의 소자 특성도 매우 좋아서 Ni/4H-SiC Schottky 다이오드와 Ni/6H-SiC Schottky 다이오드 모두 300℃까지 전류 특성의 변화가 거의 없었으며 550℃에서도 양호한 정류 특성을 보였다. 상온에서의 Schottky barrier height와 이상인자(ideality factor) 및 specific on-resistance는 Ni/4H-SiC의 경우는 1.55eV, 1.3, 3.6×10/sup -2/Ω·㎠이었으며 Ni/6H-SiC Schottky 다이오드의 경우에 1.24eV, 1.2, 2.6×10/sup -2Ω·㎠/로 나타났다. 실험 결과 Ni/4H-SiC 및 Ni/6H-SiC Schottky 다이오드 모두 고온, 고전압 소자로서 우수한 특성을 나타냄이 입증되었다.

  • PDF

Characteristics of Schottky Diode and Schottky Barrier Metal-Oxide-Semiconductor Field-Effect Transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.69-76
    • /
    • 2005
  • Interface-trap density, lifetime and Schottky barrier height of erbium-silicided Schottky diode are evaluated using equivalent circuit method. The extracted interface trap density, lifetime and Schottky barrier height for hole are determined as $1.5{\times}10^{13} traps/cm^2$, 3.75 ms and 0.76 eV, respectively. The interface traps are efficiently cured by $N_2$ annealing. Based on the diode characteristics, various sizes of erbium- silicided/platinum-silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from 20 m to 35nm. The manufactured SB-MOSFETs show excellent drain induced barrier lowering (DIBL) characteristics due to the existence of Schottky barrier between source and channel. DIBL and subthreshold swing characteristics are compatible with the ultimate scaling limit of double gate MOSFETs which shows the possible application of SB-MOSFETs in nanoscale regime.

중성자 조사된 SiC Schottky Diode의 온도 의존 특성 (Temperature Dependence of Neutron Irradiated SiC Schottky Diode)

  • 김성수;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제27권10호
    • /
    • pp.618-622
    • /
    • 2014
  • The temperature dependent characteristics on the properties of SiC Schottky Diode has been investigated. In this study, the temperature dependent current-voltage characteristics of the SiC Schottky diode were measured in the range of 300 ~ 500 K. Divided into pre- and post- irradiated device was measured. The barrier height after irradiation device at 500 K increased 0.15 eV compared to 300 K, the barrier height of pre- neutron irradiated Schottky diode increased 0.07 eV. The effective barrier height after irradiation increased from 0.89 eV to 1.05 eV. And ideality factor of neutron irradiated Schottky diode at 500 K decreased 0.428 compared to 300 K, the ideality factor of pre- neutron irradiated Schottky diode decreased 0.354. Also, a slight positive shift in threshold voltage from 0.53 to 0.68 V. we analyzed the effective barrier height and ideality factor of SiC Schottky diode as function of temperature.

Analysis of Schottky Barrier Height in Small Contacts Using a Thermionic-Field Emission Model

  • Jang, Moon-Gyu;Lee, Jung-Hwan
    • ETRI Journal
    • /
    • 제24권6호
    • /
    • pp.455-461
    • /
    • 2002
  • This paper reports on estimating the Schottky barrier height of small contacts using a thermionic-field emission model. Our results indicate that the logarithmic plot of the current as a function of bias voltage across the Schottky diode gives a linear relationship, while the plot as a function of the total applied voltage across a metal-silicon contact gives a parabolic relationship. The Schottky barrier height is extracted from the slope of the linear line resulting from the logarithmic plot of current versus bias voltage across the Schottky diode. The result reveals that the barrier height decreases from 0.6 eV to 0.49 eV when the thickness of the barrier metal is increased from 500 ${\AA}$ to 900 ${\AA}$. The extracted impurity concentration at the contact interface changes slightly with different Ti thicknesses with its maximum value at about $2.9{\times}10^{20}\;cm^{-3}$, which agrees well with the results from secondary ion mass spectroscopy (SIMS) measurements.

  • PDF

Pt-GaAs Schottky Barrier Diode의 Computer Simulation (Computer Simulation of Pt-GaAs Schottky Barrier Diode)

  • 윤현로;홍봉식
    • 대한전자공학회논문지
    • /
    • 제27권3호
    • /
    • pp.101-107
    • /
    • 1990
  • 본 논문에서 유한차분법을 이용하여 Pt-GaAs Schottky Barrier Diode(SBD)를 일차원으로 simulation하였다. 반도체의 지배방정식인 포아송 방정식(poisson equation)과 전류연속 방정식)current continuity equation)을 이산화 시킨 다음 Newton-Raphson 방법으로 선형화시켜서 가우스 소거법으로 해가 수렴할 때까지 반복적으로 풀었다. 이 SBD의 해석에 필요한 경계조건은 열전자방출-확산이론(thermionic emission-diffusion theory)으로부터 Schottky Barrier의 경계조건을 취하였다. 에피층을 갖는 SBD를 모델링하여 인가전압에 따른 다이오드에서의 전위와 전자의 분포를 simulation 하였다. 전위에 따라 변하는 접속층을 고려하여 실험치와 잘 일치하는 결과를 얻었다.

  • PDF

Electrical Properties of TiO2 Thin Film and Junction Analysis of a Semiconductor Interface

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • 제16권4호
    • /
    • pp.248-251
    • /
    • 2018
  • To research the characteristics of $TiO_2$ as an insulator, $TiO_2$ films were prepared with various annealing temperatures. It was researched the currents of $TiO_2$ films with Schottky barriers in accordance with the contact's properties. The potential barrier depends on the Schottky barrier and the current decreases with increasing the potential barrier of $TiO_2$ thin film. The current of $TiO_2$ film annealed at $110^{\circ}C$ was the lowest and the carrier density was decreased and the resistivity was increased with increasing the hall mobility. The Schottky contact is an important factor to become semiconductor device, the potential barrier is proportional to the hall mobility, and the hall mobility increased with increasing the potential barrier and became more insulator properties. The reason of having the high mobility in the thin films in spite of the lowest carrier concentration is that the conduction mechanism in the thin films is due to the band-to-band tunneling phenomenon of electrons.

Electrical Characteristics of Metal/n-InGaAs Schottky Contacts Formed at Low Temperature

  • 이홍주
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.365-370
    • /
    • 2000
  • Schottky contacts on n-In$\_$0.53//Ga$\_$0.47//As have been made by metal deposition on substrates cooled to a temperature of 77K. The current-voltage and capacitance-voltage characteristics showed that the Schottky diodes formed at low temperature had a much improved barrier height compared to those formed at room temperature. The Schottky barrier height ø$\_$B/ was found to be increased from 0.2eV to 0.6eV with Ag metal. The saturation current density of the low temperature diode was about 4 orders smaller than for the room temperature diode. A current transport mechanism dominated by thermionic emission over the barrier for the low temperature diode was found from current-voltage-temperature measurement. Deep level transient spectroscopy studies exhibited a bulk electron trap at E$\_$c/-0.23eV. The low temperature process appears to reduce metal induced surface damage and may form an MIS (metal-insulator-semiconductor)-like structure at the interface.

  • PDF

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF