Browse > Article
http://dx.doi.org/10.5573/JSTS.2015.15.1.007

Temperature Dependent Current Transport Mechanism in Graphene/Germanium Schottky Barrier Diode  

Khurelbaatar, Zagarzusem (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Kil, Yeon-Ho (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Shim, Kyu-Hwan (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Cho, Hyunjin (Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Kim, Myung-Jong (Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Kim, Yong-Tae (Semiconductor Materials and Device Laboratory, Korea Institiute of Science and Technology)
Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Publication Information
Abstract
We have investigated electrical properties of graphene/Ge Schottky barrier diode (SBD) fabricated on Ge film epitaxially grown on Si substrate. When decreasing temperature, barrier height decreased and ideality factor increased, implying their strong temperature dependency. From the conventional Richardson plot, Richardson constant was much less than the theoretical value for n-type Ge. Assuming Gaussian distribution of Schottky barrier height with mean Schottky barrier height and standard deviation, Richardson constant extracted from the modified Richardson plot was comparable to the theoretical value for n-type Ge. Thus, the abnormal temperature dependent Schottky behavior of graphene/Ge SBD could be associated with a considerable deviation from the ideal thermionic emission caused by Schottky barrier inhomogeneities.
Keywords
Graphene; Ge; Si; Schottky barrier height; ideality factor; Schottky barrier inhomogeneities; Gaussian distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. W. Jung, W. S. Jung, and J. H. Park, "Hydrazine Based Fermi-Level Depinning Process on Metal/Germanium Schottky Junction," IEEE Electron Device Lett, Vol.34, No.5, pp.599-601, May., 2013.   DOI   ScienceOn
2 J. R. Wu, Y. H. Wu, C. Y. Hou, M. L. Wu, C. C. Lin, and L. L. Chen, "Impact of Fluorine Treatment on Fermi-Level Depinning for Metal/Germanium Schottky Junctions," Appl. Phys. Lett, Vol.99, pp.253504-1-253504-3, Dec., 2011.   DOI   ScienceOn
3 K. Ikeda, Y. Yamashita, and N. Sugiyama, "Modulation of NiGe/Ge Schottky Barrier Height by Sulfur Segregation During Ni Germanidation," Appl. Phys. Lett, Vol.88, pp.152115-1-152115-3, May., 2006.   DOI   ScienceOn
4 T. Nishimura, K. Kita, and A. Toriumi, "A significant Shift of Schottky Barrier Heights at Strongly Pinned Metal/Germanium Interface by Inserting an Ultra-Thin Insulating Film," Appl. Phys. Express, Vol.1, pp.051406-1-051406-3, May., 2008.   DOI
5 Z. Khurelbaatar, Y. H. Kil, H. J. Yun, K. H. Shim, J. T. Nam, K. S. Kim, S. K. Lee, C. J. Choi, "Modification of Schottky Barrier Properties of Au/N-type Ge Schottky Barrier Diode Using Monolayer Graphene Interlayer," J. Alloys. Compd Vol. 614, pp.323-329, June., 2014.   DOI   ScienceOn
6 L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, "Monolayer Graphene/Germanium Schottky Junction as High Performance, Self Driven Infrared Light Photodetector," ACS Appl. Mater. Interfaces, Vol.5, pp.9362-9366, Sep., 2013.   DOI   ScienceOn
7 M. Jutzi, M. Berroth, G. WOhl, M. Oehme, and E. Kasper, "Ge-on-Si Vertical Incidence Photodiodes with 39-GHz Bandwidth," IEEE Photon. Technol. Lett, Vol.17, No.7, pp.1510-1512, July., 2005.   DOI   ScienceOn
8 Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, "Effectiveness of SiGe Buffer Layers in Reducing Dark Currents of Ge-on-Si Photo-detectors," IEEE Journal of Quantum Electronics, Vol.43, No.3, pp.238-242, March., 2007.   DOI   ScienceOn
9 W. Hu, B. Cheng, C. Xue, S. Su, H. Xue, Y. Zuo, and Q. Wang, "Ge-on-Si for Si-based Integrated Materials and Photonic Devices," Front. Optoelectron, Vol.5, No.1, pp.41-50, Nov., 2012.   DOI
10 J. Michel, J. Liu, and L. C. Kimerling, "High Performance Ge-on-Si Photodetectors," Nature Photonics, Vol.4, pp.527-534, July., 2010.   DOI
11 S. S. Naik and V. R. Reddy, "Temperature Dependency and Current Transport Mechanism of Pd/V/N-type InP Schottky Rectifier," Adv. Mater. Lett, Vol.3, No.3, pp.188-196, Feb., 2012.   DOI
12 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, Vol.324, pp.1312-1314, June., 2009.   DOI   ScienceOn
13 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett, Vol.97, No.18, pp.187401-1-187401-4, Nov., 2006.   DOI
14 E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford; U.K.,1988) 2nd ed., p. 39.
15 S. M. Sze: Physics of Semiconductor Devices (Wiley, New York; USA., 1981) 2nd ed., p. 90.
16 G. P. Ru, R. L. V. Meirhaeghe, S. Forment, Y. L. Jiang, Q. S. Zhu, B. Z. Li, "Voltage Dependence of Effective Barrier Height Reduction in Inhomogeneous Schottky Diodes" Solid State Electron, Vol.49, No.4, pp.606-611, Apr., 2005.   DOI   ScienceOn
17 A. Gumus, A. Turut, and N. Yalcin, "Temperature Dependent Barrier Characteristics of CrNiCo Alloy Schottky Contacts on N-type Molecular-Beam Epitaxy GaAs," J. Appl. Phys, Vol.91, No.1, pp. 245-250, January., 2002.   DOI   ScienceOn
18 O. Pakma, N. Serin, T. Serin, and S. Altindal, "The Double Gaussian Distribution of Barrier Heights in Al/TiO2/p-Si (Metal-Insulator-Semiconductor) Structures at Low Temperatures", J. Appl. Phys. Vol.104, No.1, pp.14501-1-14501-6, July., 2008.   DOI   ScienceOn
19 S. Karatas, S. Altindal, A. Turut, and A. Ozmen "Temperature Dependence of Characteristic Parameters of the H-terminated Sn/p-Si (100) Schottky Contacts," Appl. Surf. Sci, Vol.217, No.1, pp.250-260, July., 2003.   DOI   ScienceOn
20 J. J. Zeng and Y. J. Lin, "Schottky Barrier Inhomogeneity for Graphene/Si-Nanowire Arrays/Ntype Si Schottky Diodes" J. Appl. Phys, Vol.104, No.3, pp.133506-1-133506-4, Apr., 2014.
21 C. Yim, N. McEvoy, and G. S. Duesberg, "Characterization of Graphene-Silicon Schottky Barrier Diodes Using Impedance Spectroscopy," Appl. Phys. Lett, Vol.103, pp.193106-1-193106-5, Nov., 2013.   DOI   ScienceOn
22 Y. Zhang, Y. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, "Origin of Spatial Charge Inhomogeneity in Graphene," Nature Physics, Vol.5, pp.722-726, Dec., 2009.   DOI
23 D. Sinha and J. U. Lee, "Ideal Graphene/Silicon Schottky Junction Diodes," Nano Lett, Vol.14, pp.4660-4664, July., 2014   DOI   ScienceOn
24 Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, "On the Difference in Apparent Barrier Height as Obtained from Capacitance-Voltage and Current-Voltage Temperature Measurements on Al/p-InP Schottky Barriers," Solid State Electron, Vol.29, No.6, pp.633-638, June., 1986.   DOI   ScienceOn
25 J. H. Werner and H. H. Guttler, "Barrier inhomogeneities at Schottky contacts," J. Appl. Phys, Vol.69, No.3, pp. 1522-1533, Feb., 1991.   DOI
26 D. Korucu and T. S. Mammadov, "Temperature Dependent Current Conduction Mechanisms in Au/n-InP Schottky Barrier Diodes (SBDs)," J. Optoelectron. Adv. Mater, Vol.102, No.11, pp.41-48, Feb., 2012.
27 H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, "Self-Adaptive Electronic Contact Between Graphene and Semiconductors," Appl. Phys. Lett, Vol.100, No.12, pp.122108-1-122108-4, March., 2012.   DOI   ScienceOn
28 X. Li , H. Zhu, K. Wang, A. Cao, J. Wei,C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, "Graphene-on-Silicon Schottky Junction Solar Cells," Adv. Mater, Vol.22, No.25, pp.2743-2748, Apr., 2010.   DOI   ScienceOn
29 S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, "Rectification at Graphene-Semiconductor Interfaces: Zero Gap Semiconductor Based Diodes," Phys. Rev. X 2, 011002, March., 2012.
30 N. Yildirim and A. Turut, "A Theoretical Analysis Together with Experimental Data of Inhomogeneous Schottky Barrier Diodes," Microelectron Eng, Vol.86, pp.2270-2274, Apr., 2009.   DOI   ScienceOn
31 T. Tunc, I. Dokme, S. Altindal, and I. Uslu, "Temperature Dependent Current-Voltage (I-V) Characteristics of Au/n-Si (111) Schottky Barrier Diodes (SBDs) with Polyvinyl Alcohol (Co, Ni - Doped) Interfacial Layer," Optoelectron. Adv. Mater. Rapid Commun, Vol.4, No.7, pp.947-950, July., 2010.
32 V. Janardhanam, K. Moon, J. S. Kim, M. S. Yi, K. S. Ahn, and C. J. Choi, "Microstructural Evolution and Electrical Characteristics of Er-Germanides Formed on Ge Substrate," J. Electrochem. Soc, Vol.158, No.8, pp.H751-H755, May., 2011.   DOI   ScienceOn
33 A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, "Fermi-level pinning and charge neutrality level in germanium," Appl. Phys. Lett, Vol.89, No.1 pp.252110-1-252110-2, July., 2006.   DOI   ScienceOn
34 K. Martens, R. Rooyackers, A. Firrincieli, B. Vincent, R. Loo, B. De Jaeger, M. Meuris, P. Favia, H. Bender, B. Douhar, W. Vandervorst, E. Simoen, M. Jurczak, D. J. Wouters, and J. A. Kittl, "Contact Resistivity and Fermi-Level Pinning in N-Type Ge Contacts with Epitaxial Si-Passivation," Appl. Phys. Lett, Vol.98, pp.013504(1)-013504(3), January., 2011.