Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.10.618

Temperature Dependence of Neutron Irradiated SiC Schottky Diode  

Kim, Sung-Su (Department of Electronic Materials Engineering, Kwangwoon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.10, 2014 , pp. 618-622 More about this Journal
Abstract
The temperature dependent characteristics on the properties of SiC Schottky Diode has been investigated. In this study, the temperature dependent current-voltage characteristics of the SiC Schottky diode were measured in the range of 300 ~ 500 K. Divided into pre- and post- irradiated device was measured. The barrier height after irradiation device at 500 K increased 0.15 eV compared to 300 K, the barrier height of pre- neutron irradiated Schottky diode increased 0.07 eV. The effective barrier height after irradiation increased from 0.89 eV to 1.05 eV. And ideality factor of neutron irradiated Schottky diode at 500 K decreased 0.428 compared to 300 K, the ideality factor of pre- neutron irradiated Schottky diode decreased 0.354. Also, a slight positive shift in threshold voltage from 0.53 to 0.68 V. we analyzed the effective barrier height and ideality factor of SiC Schottky diode as function of temperature.
Keywords
Neutron; 4H-SiC; Schottky diode; Temperature; Effective barrier height; Ideality factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Roche, IEEE International Reliability Physics Symposium (San Jose, USA, 2006).
2 P. Jayavel, K. Santhakumar, and J. Kumar, Physica B, 315, 88 (2002).   DOI
3 J. H. Kim, S. Nigam, F. Ren, D. Schoenfeld, G. Y. Chung, and S. J. Pearton, Electrochem. Solid State Lett., 6, G105 (2003).   DOI   ScienceOn
4 K. Cinar, C. Coskun, E. Gur, and S. Aydogan, Nucl. Inst. and Meth. in Phys. Research B, 267, 87 (2009).   DOI
5 H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burn, J. Appl. Phys., 76, 1363 (1994).   DOI   ScienceOn
6 A. Saha and J. A. Cooper, IEEE Trans. Electron Devices, 52, 2786 (2007).
7 W. Cunningham, A. Gouldwell, G. Lambm, J. Scott, K. Mathieson, P. Roya, R. Bates, P. Thornton, K. M. Smith, R. Cusco, M. Glaser, and M. Rahman, Nucl. Instr. and Meth. A, 487, 33 (2002).   DOI
8 A. Larry, Nucl. Inst Meth A, 428, 95 (1999).   DOI
9 K. Cinar, C. Coskun, E. Gur, and S. Aydogan, Nucl. Inst. Meth. in Physics Research B, 267, 87 (2009).   DOI
10 T. R. Oldham and F. B. McLean, IEEE Trans. on Nuclear Sci., 50, 483 (2003).   DOI   ScienceOn