• 제목/요약/키워드: Schottky device

검색결과 143건 처리시간 0.028초

Ni과 Ag 금속을 이용한 N-type Si Schottky Junction 광전소자 (N-type Si Schottky Junction Photoelectric Device Using Nickel and Silver)

  • 서철원;홍승혁;윤주형;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.389-393
    • /
    • 2014
  • A thin metal-embedding Schottky device was fabricated for an efficient photoelectric device. Semitransparent thick of 10 nm metal layers were deposited by sputtering of Ag and Ni on a Si substrate. The (111) N-type Si wafers with one-side polished, 450~500 ${\mu}m$ and resistivity $1{\sim}20{\Omega}{\cdot}cm$ were used. High rectifying ratio about 100 from Ni-Schottky device was achieved. This design would provide an effective scheme for high-performing photoelectric devices.

Characteristics of Schottky Diode and Schottky Barrier Metal-Oxide-Semiconductor Field-Effect Transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.69-76
    • /
    • 2005
  • Interface-trap density, lifetime and Schottky barrier height of erbium-silicided Schottky diode are evaluated using equivalent circuit method. The extracted interface trap density, lifetime and Schottky barrier height for hole are determined as $1.5{\times}10^{13} traps/cm^2$, 3.75 ms and 0.76 eV, respectively. The interface traps are efficiently cured by $N_2$ annealing. Based on the diode characteristics, various sizes of erbium- silicided/platinum-silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from 20 m to 35nm. The manufactured SB-MOSFETs show excellent drain induced barrier lowering (DIBL) characteristics due to the existence of Schottky barrier between source and channel. DIBL and subthreshold swing characteristics are compatible with the ultimate scaling limit of double gate MOSFETs which shows the possible application of SB-MOSFETs in nanoscale regime.

Stability Assessment of Lead Sulfide Colloidal Quantum Dot Based Schottky Solar Cell

  • Song, Jung-Hoon;Kim, Jun-Kwan;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.413-413
    • /
    • 2012
  • Lead sulfide (PbS) Colloidal quantum dots (CQDs) are promising material for the photovoltaic device due to its various outstanding properties such as tunable band-gap, solution processability, and infrared absorption. More importantly, PbS CQDs have large exciton Bohr radius of 20 nm due to the uniquely large dielectric constants that result in the strong quantum confinement. To exploit desirable properties in photovoltaic device, it is essential to fabricate a device exhibiting stable performance. Unfortunately, the performance of PbS NQDs based Schottky solar cell is considerably degraded according to the exposure in the air. The air-exposed degradation originates on the oxidation of interface between PbS NQDS layer and metal electrode. Therefore, it is necessary to enhance the stability of Schottky junction device by inserting a passivation layer. We investigate the effect of insertion of passivation layer on the performance of Schottky junction solar cells using PbS NQDs with band-gap of 1.3 eV. Schottky solar cell is the simple photovoltaic device with junction between semiconducting layer and metal electrode which a significant built-in-potential is established due to the workfunction difference between two materials. Although the device without passivation layer significantly degraded in several hours, considerable enhancement of stability can be obtained by inserting the very thin LiF layer (<1 nm) as a passivation layer. In this study, LiF layer is inserted between PbS NQDs layer and metal as an interface passivation layer. From the results, we can conclude that employment of very thin LiF layer is effective to enhance the stability of Schottky junction solar cells. We believe that this passivation layer is applicable not only to the PbS NQDs based solar cell, but also the various NQDs materials in order to enhance the stability of the device.

  • PDF

Metal-Oxide-Semiconductor 광전소자 (Metal-Oxide-Semiconductor Photoelectric Devices)

  • 강길모;윤주형;박윤창;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.276-281
    • /
    • 2014
  • A high-responsive Schottky device has been achieved by forming a thin metal deposition on a Si substrate. Two-different metals of Ni and Ag were used as a Schottky metal contact with a thickness about 10 nm. The barrier height formation between metal and Si determines the rectifying current profiles. Ag-embedding Schottky device gave an extremely high response of 17,881 at a wavelength of 900 nm. An efficient design of Schottky device may applied for photoelectric devices, including photodetectors and solar cells.

Cr- 및 Ni- 소스/드레인 쇼트키 박막 트랜지스터의 장벽 특성에 대한 실험 및 모델링 연구 (Experimental and Simulation Study of Barrier Properties in Schottky Barrier Thin-Film Transistors with Cr- and Ni- Source/Drain Contacts)

  • 정지철;문경숙;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.763-766
    • /
    • 2010
  • By improving the conducting process of metal source/drain (S/D) in direct contact with the channel, schottky barrier metal-oxide-semiconductor field effect transistors (SB MOSFETs) reveal low extrinsic parasitic resistances, offer easy processing and allow for well-defined device geometries down to the smallest dimensions. In this work, we investigated the arrhenius plots of the SB MOSFETs with different S/D schottky barrier (SB) heights between simulated and experimental current-voltage characteristics. We fabricated SB MOSFETs using difference S/D metals such as Cr (${\Phi}_{Cr}$ ~4.5 eV) and Ni (${\Phi}_{Ni}$~5.2 eV), respectively. Schottky barrier height (${\Phi}_B$) of the fabricated devices were measured to be 0.25~0.31 eV (Cr-S/D device) and 0.16~0.18 eV (Ni-S/D device), respectively in the temperature range of 300 K and 475 K. The experimental results have been compared with 2-dimensional simulations, which allowed bandgap diagram analysis.

중성자 조사된 SiC Schottky Diode의 온도 의존 특성 (Temperature Dependence of Neutron Irradiated SiC Schottky Diode)

  • 김성수;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제27권10호
    • /
    • pp.618-622
    • /
    • 2014
  • The temperature dependent characteristics on the properties of SiC Schottky Diode has been investigated. In this study, the temperature dependent current-voltage characteristics of the SiC Schottky diode were measured in the range of 300 ~ 500 K. Divided into pre- and post- irradiated device was measured. The barrier height after irradiation device at 500 K increased 0.15 eV compared to 300 K, the barrier height of pre- neutron irradiated Schottky diode increased 0.07 eV. The effective barrier height after irradiation increased from 0.89 eV to 1.05 eV. And ideality factor of neutron irradiated Schottky diode at 500 K decreased 0.428 compared to 300 K, the ideality factor of pre- neutron irradiated Schottky diode decreased 0.354. Also, a slight positive shift in threshold voltage from 0.53 to 0.68 V. we analyzed the effective barrier height and ideality factor of SiC Schottky diode as function of temperature.

Erbium 실리사이드를 이용하여 제작한 n-형 쇼트키장벽 관통트랜지스터의 전기적 특성 (Characteristics of Erbium silicided n-type Schottky barrier tunnel transistors)

  • Moongyu Jang;Kicheon Kang;Sunglyul Maeng;Wonju Cho;Lee, Seongjae;Park, Kyoungwan
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.779-782
    • /
    • 2003
  • The theoretical and experimental current-voltage characteristics of Erbium silicided n-type Schottky barrier tunneling transistors (SBTTs) are discussed. The theoretical drain current to drain voltage characteristics show good correspondence and the extracted Schottky barrier height is 0.24 eV. The experimentally manufactured n-type SBTTs with 60 nm gate lengths show typical transistor behaviors in drain current to drain voltage characteristics. The drain current on/off ratio is about 10$^{5}$ at low drain voltage regime in drain current to gate voltage characteristics.

  • PDF

Electrochemical Metallization방법을 이용한 GaN Schottky Diode의 제작과 전기적 특성 향상 및 분석 (Electrical Characteristics of n-GaN Schottky Diode fabricated by using Electrochemical Metallization)

  • 이철호;;이명재;곽성관;김동식;정관수;강태원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.205-208
    • /
    • 2001
  • Schottky barrier diodes are fabricated on a intrinsic GaN(4${\mu}{\textrm}{m}$) epitaxial structure grown by rf plasma molecular beam epitaxy (MBE) on sapphire substrates. First, We make Ohmic electrodes (Ti/Al/Ti/Au) by evaporator. Next, we contact RuO$_2$ by dipping in the solution (RuCl$_3$.HClO$_4$), and then we deposit Ni/Au on the surface of RuO$_2$ by evaporator. We study the electrical characteristics of GaN Schottky barrier diodes made by these methods. Measurements are C-V, I-V, SEM, EDX, and XRD for the characteristics of devices. Thickness of RuO$_2$ layer depends on supplied voltage and dipping time. Device of thinner RuO$_2$ layer have a good Schottky characteristics compare with device of thicker RuO$_2$ layer

  • PDF

Bi-directional Two Terminal Switching Device with Metal/P/N+or Metal/N/P+ Junction

  • Kil, Gyu-Hyun;Lee, Sung-Hyun;Yang, Hyung-Jun;Lee, Jung-Min;Song, Yun-Heub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2012
  • We studied a bilateral switching device for spin transfer torque (STT-MRAM) based on 3D device simulation. Metal/P/N+or Metal/N/P+ junction device with $30{\times}30nm2$ area which is composed of one side schottky junction at Metal/P/N+ and Metal/N/P+ provides sufficient bidirectional current flow to write data by a drain induced barrier lowering (DIBL). In this work, Junction device confirmed that write current is more than 30 uA at 2 V, It is also has high on-off ratio over 105 under read operation. Junction device has good process feasibility because metal material of junction device could have been replaced by bottom layer of MTJ. Therefore, additional process to fabricate two outer terminals is not need. so, it provides simple fabrication procedures. it is expected that Metal/P/N+ or Metal/N/P+ structure with one side schottky junction will be a promising switch device for beyond 30 nm STT-MRAM.

  • PDF

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.225-228
    • /
    • 2017
  • In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.