• Title/Summary/Keyword: Scheduling problem

Search Result 1,234, Processing Time 0.027 seconds

Dynamic Decisions using Variable Neighborhood Search for Stochastic Resource-Constrained Project Scheduling Problem (확률적 자원제약 스케줄링 문제 해결을 위한 가변 이웃탐색 기반 동적 의사결정)

  • Yim, Dong Soon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Stochastic resource-constrained project scheduling problem is an extension of resource-constrained project scheduling problem such that activity duration has stochastic nature. In real situation where activity duration is not known until the activity is finished, open-loop based static policies such as activity-based policy and priority-based policy will not well cope with duration variability. Then, a dynamic policy based on closed-loop decision making will be regarded as an alternative toward achievement of minimal makespan. In this study, a dynamic policy designed to select activities to start at each decision time point is illustrated. The performance of static and dynamic policies based on variable neighborhood search is evaluated under the discrete-event simulation environment. Experiments with J120 sets in PSPLIB and several probability distributions of activity duration show that the dynamic policy is superior to static policies. Even when the variability is high, the dynamic policy provides stable and good solutions.

Exact Algorithm for the Weapon Target Assignment and Fire Scheduling Problem (표적 할당 및 사격순서결정문제를 위한 최적해 알고리즘 연구)

  • Cha, Young-Ho;Jeong, BongJoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.143-150
    • /
    • 2019
  • We focus on the weapon target assignment and fire scheduling problem (WTAFSP) with the objective of minimizing the makespan, i.e., the latest completion time of a given set of firing operations. In this study, we assume that there are m available weapons to fire at n targets (> m). The artillery attack operation consists of two steps of sequential procedure : assignment of weapons to the targets; and scheduling firing operations against the targets that are assigned to each weapon. This problem is a combination of weapon target assignment problem (WTAP) and fire scheduling problem (FSP). To solve this problem, we define the problem with a mixed integer programming model. Then, we develop exact algorithms based on a dynamic programming technique. Also, we suggest how to find lower bounds and upper bounds to a given problem. To evaluate the performance of developed exact algorithms, computational experiments are performed on randomly generated problems. From the results, we can see suggested exact algorithm solves problems of a medium size within a reasonable amount of computation time. Also, the results show that the computation time required for suggested exact algorithm can be seen to increase rapidly as the problem size grows. We report the result with analysis and give directions for future research for this study. This study is meaningful in that it suggests an exact algorithm for a more realistic problem than existing researches. Also, this study can provide a basis for developing algorithms that can solve larger size problems.

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

An Algorithm for Generator Maintenance Scheduling Considering Transmission System (송전계통을 고려한 계통운용자의 발전기 예방정비계획 알고리즘에 관한 연구)

  • Han Seok-Man;Shin Young-Gyun;Kim Balho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.352-357
    • /
    • 2005
  • In competitive electricity markets, the System Operator (SO) coordinates the overall maintenance schedules when the collective maintenance schedule reported to 50 by Gencos not satisfy the specified operating criteria, such as system reliability or supply adequacy. This paper presented a method that divides generator maintenance scheduling of the 50 into a master-problem and a sub-problem. Master-problem is schedule coordination and sub-problem is DC-optimal power flow. If sub-problem is infeasible, we use the algorithm of modifying operating criteria of master-problem. And, the 50 should use the open information only, because the information such as cost function of a generator and bidding Price is highly crucial for the strategies of profit maximization.

A Study on the Job Shop Scheduling Using Improved Randomizing Algorithm (개선된 Randomizing 알고리즘을 이용한 Job Shop 일정계획에 관한 연구)

  • 이화기;김민석;이승우
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.141-154
    • /
    • 2004
  • The objective of this paper is to develop the efficient heuristic method for solving the minimum makespan problem of the job shop scheduling. The proposed heuristic method is based on a constraint satisfaction problem technique and a improved randomizing search algorithm. In this paper, ILOG programming libraries are used to embody the job shop model, and a constraint satisfaction problem technique is developed for this model to generate the initial solution. Then, a improved randomizing search algorithm is employed to overcome the increased search time of constrained satisfaction problem technique on the increased problem size and to find a improved solution. Computational experiments on well known MT and LA problem instances show that this approach yields better results than the other procedures.

Special Cases on Two Machine Flow Shop Scheduling with Weighted WIP Costs

  • Yang, Jae-Hwan
    • Management Science and Financial Engineering
    • /
    • v.15 no.2
    • /
    • pp.69-100
    • /
    • 2009
  • In this paper, we consider a relatively new two-machine flow shop scheduling problem where the unit time WIP cost increases as a job passes through various stages in the production process, and the objective is to minimize the total WIP (work-in-process) cost. Specifically, we study three special cases of the problem. First, we consider the problem where processing times on machine 1 are identical. Second, the problem with identical processing times on machine 2 is examined. The recognition version of the both problems is unary NP-complete (or NP-complete in strong sense). For each problem, we suggest two simple and intuitive heuristics and find the worst case bound on relative error. Third, we consider the problem where the processing time of a job on each machine is proportional to a base processing time. For this problem, we show that a known heuristic finds an optimal schedule.

Integer Programming Approach for the Outsourcing Decision Problem in a Single Machine Scheduling Problem with Due Date Constraints (납기를 고려한 아웃소싱 일정계획문제의 정수계획을 활용한 접근법)

  • Hong, Jung Man;Lee, Ik Sun
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.133-141
    • /
    • 2013
  • In this paper, we considers the outsourcing decision problem in a single machine scheduling problem. The decision problem is to determine for each job whether to be processed on an in-house manufacturing or external facilities(outsourcing). Moreover, this paper considers a situation where each job has a due date. The objective of the problem is to minimize the outsourcing cost, subject to the due date constraints. The considered problem is proved to be NP-hard. Some solution properties and valid inequalities are derived, and an effective lower bound is derived based on the LP-relaxation. The results of experimental tests are presented to evaluate the performance of the suggested lower bound.

Applying CSP techniques to automated scheduling with agents in distributed environment (분산 환경 하에서 지능형 에이전트 기반의 자동 스케줄링을 위한 제약만족 기법의 응용)

  • Jung, Jong-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.87-94
    • /
    • 2007
  • Many researchers have modeled complicated problems with distributed AI technologies in distributed environment. Especially, intelligent agent technology we often proposed among researchers as efficient method to solve the complicated problems because agent technology makes possibile to share different problem solving abilities among processors in distributed processing environment. In this paper, we propose multiagent system model to solve distributed scheduling problem. At this point we apple CSP techniques to the multiagent model as individual problem solving ability of member agents. Scheduling problem is divided into subproblems according to constraints by distributed resources, then each agent solves its subproblem using CSP solver in the proposed model. This method improves scheduling efficiency. For meeting scheduling problem of case study, we show CSP modeling process and suggest problem solving procedure by multiagent system model.

  • PDF

Investment Scheduling of Maximizing Net Present Value of Dividend with Reinvestment Allowed

  • Sung, Chang-Sup;Song, Joo-Hyung;Yang, Woo-Suk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.506-516
    • /
    • 2005
  • This paper deals with an investment scheduling problem of maximizing net present value of dividend with reinvestment allowed, where each investment has certain capital requirement and generates deterministic profit. Such deterministic profit is calculated at completion of each investment and then allocated into two parts, including dividend and reinvestment, at each predetermined reinvestment time point. The objective is to make optimal scheduling of investments over a fixed planning horizon which maximizes total sum of the net present values of dividends subject to investment precedence relations and capital limit but with reinvestment allowed. In the analysis, the scheduling problem is transformed to a kind of parallel machine scheduling problem and formulated as an integer programming which is proven to be NP-complete. Thereupon, a depth-first branch-and-bound algorithm is derived. To test the effectiveness and efficiency of the derived algorithm, computational experiments are performed with some numerical instances. The experimental results show that the algorithm solves the problem relatively faster than the commercial software package (CPLEX 8.1), and optimally solves the instances with up to 30 investments within a reasonable time limit.

  • PDF

Multi-Objective Short-Term Fixed Head Hydrothermal Scheduling Using Augmented Lagrange Hopfield Network

  • Nguyen, Thang Trung;Vo, Dieu Ngoc
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1882-1890
    • /
    • 2014
  • This paper proposes an augmented Lagrange Hopfield network (ALHN) based method for solving multi-objective short term fixed head hydrothermal scheduling problem. The main objective of the problem is to minimize both total power generation cost and emissions of $NO_x$, $SO_2$, and $CO_2$ over a scheduling period of one day while satisfying power balance, hydraulic, and generator operating limits constraints. The ALHN method is a combination of augmented Lagrange relaxation and continuous Hopfield neural network where the augmented Lagrange function is directly used as the energy function of the network. For implementation of the ALHN based method for solving the problem, ALHN is implemented for obtaining non-dominated solutions and fuzzy set theory is applied for obtaining the best compromise solution. The proposed method has been tested on different systems with different analyses and the obtained results have been compared to those from other methods available in the literature. The result comparisons have indicated that the proposed method is very efficient for solving the problem with good optimal solution and fast computational time. Therefore, the proposed ALHN can be a very favorable method for solving the multi-objective short term fixed head hydrothermal scheduling problems.