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Multi-Objective Short-Term Fixed Head Hydrothermal Scheduling 
Using Augmented Lagrange Hopfield Network 

 
 

Thang Trung Nguyen† and Dieu Ngoc Vo* 
 

Abstract – This paper proposes an augmented Lagrange Hopfield network (ALHN) based method for 
solving multi-objective short term fixed head hydrothermal scheduling problem. The main objective of 
the problem is to minimize both total power generation cost and emissions of NOx, SO2, and CO2 over 
a scheduling period of one day while satisfying power balance, hydraulic, and generator operating 
limits constraints. The ALHN method is a combination of augmented Lagrange relaxation and 
continuous Hopfield neural network where the augmented Lagrange function is directly used as the 
energy function of the network. For implementation of the ALHN based method for solving the 
problem, ALHN is implemented for obtaining non-dominated solutions and fuzzy set theory is applied 
for obtaining the best compromise solution. The proposed method has been tested on different systems 
with different analyses and the obtained results have been compared to those from other methods 
available in the literature. The result comparisons have indicated that the proposed method is very 
efficient for solving the problem with good optimal solution and fast computational time. Therefore, 
the proposed ALHN can be a very favorable method for solving the multi-objective short term fixed 
head hydrothermal scheduling problems. 
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1. Introduction 
 
The short term hydro-thermal scheduling (HTS) problem 

is to determine power generation among the available 
thermal and hydro power plants so that the fuel cost of 
thermal units is minimized over a schedule time of a single 
day or a week while satisfying both hydraulic and electrical 
operational constraints such as the quantity of available 
water, limits on generation, and power balance [1]. However, 
the major amount electric power in power systems is 
produced by thermal plants using fossil fuel such as oil, 
coal, and natural gases [2]. In fact, the process of electricity 
generation from fossil fuel releases several contaminants 
such as nitrogen oxides (NOx), sulphur dioxide (SO2), and 
carbon dioxide (CO2) into the atmosphere [3]. Therefore, 
the HTS problem can be extended to minimize the gaseous 
emission as a result of the recent environmental require-
ments in addition to the minimization the fuel cost of 
thermal power plants, forming the multi-objective HTS 
problem. The multi-objective HTS problem is more 
complex than the HTS problem since it needs to find 
several obtained non-dominated solutions to determine the 
best compromise solution which leads to time consuming. 
Therefore, the solution methods for the multi-objective 
HTS have to be efficient and effective for obtaining 

optimal solutions. 
In the past decades, several conventional methods have 

been used to solve the classical HTS problem neglecting 
environment aspects such as dynamic programming (DP) 
[4], network flow programming (NFP) [5], Lagrange 
relaxation (LR) [6], and Benders decomposition [7] 
methods. Among these methods, the DP and LR methods 
are more popular ones. However, the computational and 
dimensional requirements of the DP method increase 
drastically with large-scale system planning horizon which 
is not appropriate for dealing with large-scale problems. 
On the contrary, the LR method is more efficient and can 
deal with large-scale problems. However, the solution 
quality of the LR for optimization problems depends on 
its duality gap which results from the dual problem 
formulation and might oscillate, leading to divergence 
for some problems with operation limits and non-convexity 
of incremental heat rate curves of generators. The Benders 
decomposition method is usually used to reduce the 
dimension of the problem into subproblems which can be 
solved by DP, Newton’s, or LR method. In addition to 
the conventional methods, several artificial intelligence 
based methods have been also implemented for solving 
the HTS problem such as simulated annealing (SA) [8], 
evolutionary programming (EP) [9], genetic algorithm 
(GA) [10], differential evolution (DE) [11], and particle 
swarm optimization (PSO) [12]. These methods can find a 
near optimum solution for a complex problem. However, 
these metaheuristic search methods are based on a 
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population for searching an optimal solution, leading to 
time consuming for large-scale problems. More, these 
methods need to be run several times to obtain an optimal 
solution which is not appropriate for obtaining several 
non-dominated solution for a multi-objective optimization 
problem. Recently, neural networks have been implemented 
for solving optimization problem in hydrothermal systems 
such as two-phase neural network [13], combined Hopfield 
neural network and Lagrange function (HLN) [14], and 
combined augmented Lagrange function with Hopfield 
neural network [15-17]. The advantage of the neural 
networks is fast computation using parallel processing. 
Moreover, the Hopfield neural network based on the 
Lagrange function can also overcome other drawbacks 
of the conventional Hopfield network in finding optimal 
solutions for optimization problems such as easy 
implementation and global solution. Therefore, the neural 
networks are more appropriate for solving multi-objective 
optimization problems with several solutions determined 
for each problem. 

In this paper, an augmented Lagrange Hopfield network 
(ALHN) based method is proposed for solving multi-
objective short term fixed head HTS problem. The main 
objective of the problem is to minimize both total power 
generation cost and emissions of NOx, SO2, and CO2 
over a scheduling period of one day while satisfying power 
balance, hydraulic, and generator operating limits constraints. 
The ALHN method is a combination of augmented 
Lagrange relaxation and continuous Hopfield neural network 
where the augmented Lagrange function is directly used as 
the energy function of the network. For implementation 
of the ALHN based method for solving the problem, 
ALHN is implemented for obtaining non-dominated 
solutions and fuzzy set theory is applied for obtaining 
the best compromise solution. The proposed method has 
been tested on different systems with different analyses 
and the obtained results have been compared to those 
from other methods available in the literature including 
λ-γ iteration method (LGM), existing PSO-based HTS 
(EPSO), and PSO based method (PM) in [3] and bacterial 
foraging algorithm (BFA) [2]. 

The organization of this paper is as follows. Section 2 
addresses the multi-objective HTS problem formulation. 
The proposed ALHN based method is described in Section 3. 
Numerical results are presented in Section 4. Finally, the 
conclusion is given. 

 
 

2. Problem Formulation 
 
The main objective of the economic emission dispatch 

for the HTS problem is to minimize the total fuel cost 
and emissions of all thermal plants while satisfying all 
hydraulic, system, and unit constraints. Mathematically, the 
fixed-head short-term hydrothermal scheduling problem 

including N1 thermal plants and N2 hydro plants scheduled 
in M sub-intervals is formulated as follows: 
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where F1sk is fuel cost function; F2sk, F3sk and F4sk are 
emission function of NOx, SO2, and CO2 of sth thermal 
plant at kth sub-interval scheduling, respectively; wi (i = 1, 
…, 4) are weights corresponding to the objectives. 
subject to:  

Power balance constraints: 
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where Bij, B0i, and B00 are loss formula coefficients of 
transmission system. 

Water availability constraints: 
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where 2
hk h h hk h hkq a b P c P= + +  (10) 

 
Generator operating limits: 
 

 min max
s sk sP P P≤ ≤ ; s = 1, …, N1; k = 1, …, M (11) 

 maxmin
h hk hP P P≤ ≤ ; h = 1, …, N2; k = 1, …, M (12) 

 
 

3. ALHN based Method for the Problem 
 

3.1 ALHN for optimal solutions 
 
For implementation of the proposed ALHN for finding 

optimal solution of the problem, the augmented Lagrange 
function is firstly formulated and then this function is used 
as the energy function of conventional Hopfield neural 
network. The model of ALHN is solved using gradient 
method. 

The augmented Lagrange function L of the problem is 
formulated as follows: 
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where λk and γh are Lagrangian multipliers associated with 
power balance and water constraints, respectively; βk, βh 
are penalty factors associated with power balance and 
water constraints, respectively; and 
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The energy function E of the problem is described in 

terms of neurons as follows: 
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where Vλk and Vγh are the outputs of the multiplier neurons 
associated with power balance and water constraints, 
respectively; Vhk and Vsk are the outputs of continuous 
neurons hk, sk representing Phk, Phk, respectively. 

The dynamics of the model for updating inputs of 
neurons are defined as follows: 
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where Bhj and Bsi are the loss coefficients related to hydro 
and thermal plants, respectively; Bsh and Bhs are the loss 
coefficients between thermal and hydro plants and Bsh= 
Bhs

T. 
The algorithm for updating the inputs of neurons at step 

n is as follows: 
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where Uλk and Uγh are the inputs of the multiplier neurons; 
Usk and Uhk are the inputs of the neurons sk and hk, 
respectively; αλk and αγh are step sizes for updating the 
inputs of multiplier neurons; and αsk and αhk are step sizes 
for updating the inputs of continuous neurons. 

The outputs of continuous neurons representing power 
output of units are calculated by a sigmoid function: 
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where σ is slope of sigmoid function that determines the 
shape of the sigmoid function [15]. 

The outputs of multiplier neurons are determined based 
on the transfer function as follows: 

 
 Vλk = Uλk (31) 
 Vγh = Uγh (32) 

 
The proof of convergence for ALHN is given in [15]. 
 

3.1.1 Initialization 
 
The algorithm of ALHN requires initial conditions for 

the inputs and outputs of all neurons. For the continuous 
neurons, their initial outputs are set to middle points 
between the limits: 
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The initial inputs of continuous neurons are calculated 

based on the obtained initial outputs of neurons via the 
inverse of the sigmoid function for the continuous neurons 
or the transfer function for the multiplier neurons.  

 
3.1.2 Selection of parameters 

 
By experiment, the value of σ is fixed at 100 for all test 

systems. The other parameters will vary depending on the 
data of the considered systems. For simplicity, the pairs of 
αsk and αhk as well as βk and βh can be equally chosen. 

 
3.1.3 Termination criteria 

 
The algorithm of ALHN will be terminated when either 

maximum error Errmax is lower than a predefined threshold 
ε or maximum number of iterations Nmax is reached.  

3.1.4 Overall procedure 
 
The overall algorithm of the ALHN for finding an 

optimal solution for the HTS problem is as follows. 

Step 1: Select parameters for the model in Section 3.1.2. 
Step 2: Initialize inputs and outputs of all neurons using 

(33)-(36) as in Section 3.1.1. 
Step 3: Set n = 1. 
Step 4: Calculate dynamics of neurons using (18)-(21). 
Step 5: Update inputs of neurons using (25)-(28). 
Step 6: Calculate output of neurons using (29)-(32). 
Step 7: Calculate errors as in section 3.1.3. 
Step 8: If Errmax > ε and n < Nmax, n = n + 1 and return to 

Step 4. Otherwise, stop. 
 

3.2 Best compromise solution by fuzzy-based 
mechanism 

 
In a multi-objective problem, there often exists a 

conflict among the objectives. Therefore, finding the best 
compromise solution for a multi-objective problem is a 
very important task. To deal with this issue, a set of optimal 
non-dominated solutions known as Pareto-optimal solutions 
is found instead of only one optimal solution. The Pareto 
optimal front of a multi-objective problem provides decision 
makers several options for making decision. The best 
compromise solution will be determined from the obtained 
non-dominated optimal solution. In this paper, the best 
compromise solution from the Pareto-optimal front is 
found using fuzzy satisfying method [18]. The fuzzy goal 
is represented in linear membership function as follows: 
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where Fj is the value of objective j and Fjmax and Fjmin are 
maximum and minimum values of objective j, respectively. 

For each k non-dominated solution, the membership 
function is normalized as follows [19]: 
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where μk

D is the cardinal priority of kth non-dominated 
solution; µ(Fj) is membership function of objective j; Nobj 
is number of objective functions; and Np is number of 
Pareto-optimal solutions. 

The solution that attains the maximum membership μk
D 

in the fuzzy set is chosen as the ‘best’ solution based on 
cardinal priority ranking: 

 
 Max {μk

D: k = 1, 2, … , Np}  (39) 



Multi-Objective Short-Term Fixed Head Hydrothermal Scheduling Using Augmented Lagrange Hopfield Network 

 1886

4. Numerical Results 
 
The proposed ALHN based method has been tested on 

four hydrothermal systems. The algorithm of ALHN is 
implemented in Matlab 7.2 programming language and 
executed on an Intel 2.0 GHz PC. For termination criteria, 
the maximum tolerance ε is set to 10-5 for economic 
dispatch and emission dispatches and to 5×10-5 for 
determination of the best compromise solution. 

 
4.1 Economic and emission dispatches 

 
In this section, the proposed ALHN is tested on four 

systems. There are one thermal and one hydro power plants 
for the first system, one thermal and two hydropower 

plants for the second system, two thermal and two 
hydropower plants for the third systems, and two thermal 
and two hydropower plants for the fourth system. The data 
for the first three systems are from [1] and emission data 
from [20]. The data for the fourth system is from [2].  

 
4.1.1 Case 1: The first three systems 

 
For each system, the proposed ALHN is implemented to 

obtain the optimal solution for the cases of economic 
dispatch (w1 = 1, w2 = w3 = w4 = 0), emission dispatch (w1 
=0, w2 = w3 = w4 =1/3), and the compromise case (w1 = 0.5, 
w2 = w3 = w4 = 0.5/3). The result comparisons for the three 
cases from the proposed ALHN with other methods 
including LGM, EPSO, and PM in [3] are given in Tables 1, 

Table 1. Result comparison for the economic dispatch for first three systems (w1 = 1, w2 = w3 = w4 = 0) 
Fuel cost  Emission (kg) CPU time System Method 

($) NOx SO2 CO2 (s) 
LGM [3] 96,024.418 14,829.936 44,111.890 247,838.534 - 
EPSO [3] 96,024.607 14,830.001 44,111.984 247,839.504 - 

PM [3] 96,024.399 14,829.929 44,111.880 247,838.434 - 
1 

ALHN 96,024.376 14,834.477 44,112.913 247,896.327 1.90 
LGM [3] 848.241 575.402 4,986.155 2,951.455 - 
EPSO [3] 848.204 575.513 4,985.996 2,952.001 - 

PM [3] 847.908 575.477 4,985.743 2,951.649 - 
2 

ALHN 848.349 575.261 4986.424 2950.185 0.91 
LGM [3] 53,053.791 28,199.212 74,867.805 454,063.635 - 
EPSO [3] 53,053.793 28,199.206 74,867.802 454,063.559 - 

PM [3] 53,053.790 28,199.206 74,867.804 454,063.626 - 
3 

ALHN 53,051.608 28,556.557 74,954.095 458,621.614 1.72 

 
Table 2. Results comparison for the emission dispatch for first three problems (w1 = 0, w2 = w3 = w4 = 1/3) 

Fuel cost Emission (kg) CPU time Prob. Method 
($) NOx SO2 CO2 NOx+SO2+CO2 (s) 

LGM [3] 96,488.081 14,376.318 44,202.359 242,406.083 300,984.760 - 
EPSO [3] 96,488.384 14,376.405 44,202.506 242,407.419 300,986.330 - 

PM [3] 96,488.080 14,376.319 44,202.360 242,406.083 300,984.762 - 
1 

ALHN 96,809.798 14,267.872 44,312.396 241,263.610 299,843.900 0.80 
LGM [3] 851.983 571.991 4,993.746 2,922.820 8,488.557 - 
EPSO [3] 853.150 571.729 4,995.190 2,922.14 8,489.059 - 

PM [3] 851.981 571.992 4,993.747 2,922.820 8,488.559 - 
2 

ALHN 851.905 572.003 4993.656 2922.810 8,488.469 1.68 
LGM [3] 54,359.635 21,739.271 74,131.817 373,122.569 468,993.657 - 
EPSO [3] 54,359.657 21,739.270 74,131.817 373,122.568 468,993.655 - 

PM [3] 54,359.533 21,739.185 74,131.681 373,121.273 468,992.139 - 
3 

ALHN 55,392.748 19,986.575 73,824.875 350,972.260 444,783.700 0.78 

 
Table 3. Result comparison for the compromise case of three first systems (w1 = 0.5, w2 = w3 = w4 = 0.5/3) 

Method LGM [3] EPSO [3] PM [3] ALHN 
 System 1 96,421.702 96,421.725 96,421.46 96,465.713 

Total cost ($) System 2 851.208 851.079 852.388 850.065 
 System 3 54,337.014 54,337.027 54,336.888 55,158.619 
 System 1 301,016.417 301,016.541 301,015.145 300,286.600 

NOx+SO2+CO2 (kg) System 2 8,488.928 8,487.872 8,489.438 8,490.776 
 System 3 46,9025.136 46,9025.331 46,9023.262 44,5127.4 
 System 1 - - - 1.30 

CPU time (s) System 2 - - - 1.53 
 System 3 - - - 2.36 
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2, and 3. For the economic dispatch, the proposed ALHN 
can obtain better total costs than the other except for the 
system 2 which is slightly higher than the others. For the 
emission dispatch, the proposed ALHN can obtain less 
total emission than the others for all systems. In the 
compromise case, there is a trade-off between total cost 
and emission and the obtained solutions from the methods 
are non-dominated as in Table 3. The total computational 
times for economic dispatch, emission dispatch, and 
compromise case of the three systems from the proposed 
ALHN are compared to those from LGM, EPSO, and PM 
methods in [3]. As observed from the table, the proposed 
method is faster than the others for obtaining optimal 
solution. There is no computer reported for the methods 
in [3].  

 
4.1.2 Case 2: The fourth system 

 
For this system, each of the four objectives is indivi-

dually optimized. The results obtained by the proposed 
ALHN for each case is given in Table 4. The minimum 
total cost and emission from the proposed ALHN is 
compared to those from BFA [2] in Table 5. In all cases, 
the proposed ALHN method can obtain better solution than 
BFA except for the case of CO2 emission individual 
optimization. 

 

4.2 Determination of the best compromise solution 
 
In this section, the best compromise solution is determined 

for the first system in Section 4.1. For obtaining the best 
compromise solution for the system, three following cases 
are considered. 

 
4.2.1 Case 1: Best compromise for two objectives 

 
The best compromise solution for two objectives among 

the four objectives of this system is determined. The two 
objectives include the fuel cost and another emission 
objective while the other emission objectives are neglected. 
Therefore, there are three sub-cases for this combination 
including fuel cost and NOx, fuel cost and SO2, and fuel 
cost and CO2. For each sub-case, 21 non-dominated 
solutions are obtained by ALHN to form a Pareto-optimal 
front and the best compromise solution is determined by 
the fuzzy based mechanism. The best compromise solution 
for each sub-case is given in Table 7. In this table, the 
best compromise solution for each sub-case is determined 
via the value of the membership function µD and the weight 
associated with each objective function is determined 
accordingly. For Sub-case 1, the best compromise solution 
is found at w1 = 0.35 and w2 = 0.65 corresponding to μD = 
0.0547 at the solution number 14 among the 21 non-
dominated solutions. The total fuel cost for this sub-case 
is $96,293.5771 with the total emission of 14,397.5374 
kg NOx. The Pareto-optimal front for this sub-case is given 
in Fig. 1. Fig. 2 depicts the methodology to determine 
the best compromise solution based on the relationship 
between membership function and the weight of objective. 
Similarly, the best compromise solution for Sub-case 2 
and Sub-case 3 is determined in the same manner of 
Sub-case 1. 

 

Table 4. Total cost and emission for each individual 
objective minimization 

 Min F1 ($) Min F2 (kg) Min F3 (kg) Min F4 (kg)
F1 ($) 51891.414 54294.526 53,104.125 54,221.820
F2 (kg) 27443.038 18,958.608 20,822.202 18,963.243
F3 (kg) 73381.146 72,416.895 71,641.911 72,358.568
F4 (kg) 442113.211 335,810.130 357,415.390 335,764.187

CPU time(s) 1.29 1.53 1.79 1.11 

 
Table 5. Result comparison for individual minimization of 

each objective 

 BFA [2] ALHN 
Min F1 ($) 52,753.291 51,891.414 

Min F2 (Kg) 19,932.248 18,958.608 
Min F3 (Kg) 71,988.754 71,641.911 
Min F4 (Kg) 334,231.219 335,764.187 

Table 7. The best compromise solutions for Case 1 with two objectives 

 w1 w2 w3 w4 F1 ($) F2 (kg) F3 (kg) F4 (kg) µD 
Sub-case 1 0.35 0.65 0 0 96,293.5771 14,397.5374 - - 0.0547 
Sub-case 2 0.35 0 0.65 0 96,038.9573 - 44,089.8723 - 0.0547 
Sub-case 3 0.9 0 0 0.1 96,208.973 - - 243,159.0661 0.059 
 

Table 8. The best compromise solutions for Case 2 with three objectives 

Sub-case w1 w2 w3 w4 F1 ($) F2 (kg) F3 (kg) F4 (kg) µD 
1 0.3 0.4 0.3 0 96174.9502 14479.9754 44094.8251 - 0.02518 
2 0.6 0.2 0 0.2 96493.269 14320.319 - 241696.9 0.02494 
3 0.7 0 0.2 0.1 96245.7307 - 44112.09 242856.6422 0.02591 

 

Table 6. Computational time comparison for the first three 
systems 

Method System 1 System 2 System 3 
LGM [3] 14.83 11.46 12.26 
EPSO [3] 95.36 83.73 105 
PM [3] 43.44 39.27 49.01 
ALHN 3.99 4.12 4.89 
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4.2.2 Case 2: Best compromise for three objectives 
 
The best compromise solution for three objectives 

among the four objectives is determined. The three 
objectives include the fuel cost and two other emission 
objectives among NOx, SO2, and CO2. Therefore, there are 
three sub-cases considered for this case. Table 8 shows the 
best compromise solution for each sub-case with three 
objective functions with corresponding weight factors. For 
each sub-case, the best compromise solution is obtained 
based on the value of the membership function from 
different 43 non-dominated solutions.  

 
4.2.3 Case 3: Best compromise for four objectives 

 
The best compromise for all four objectives is considered 

in this section. The best compromise solution for this case 
is obtained from 284 non-dominated solutions based on the 
value of membership function μD given in Table 9. 

The total computational times for the three cases above 
are given in Table 10. The total computational time here is 
the total time for calculation of all non-dominated solutions 
and determination of the best compromise solution. The 
total computational time for Case 1, Case 2, and Case 3 
includes 21, 43, and 284 non-dominated solutions, 

respectively. Obviously, the computational time increases 
with the number of objective functions. 

 
 

5. Conclusion 
 
In this paper, the proposed ALHN based method is 

effectively implemented for solving the multi-objective 
short-term fixed head hydro-thermal scheduling problem. 
ALHN is a continuous Hopfield neural network with its 
energy function based on augmented Lagrange function. 
The ALHN method can find an optimal solution for an 
optimization in a very fast manner. In the proposed method 
for solving the problem, the ALHN method is implemented 
for obtaining the optimal solutions for different cases and 
a fuzzy based mechanism is implemented for obtaining 
the best compromise solution. The effectiveness of the 
proposed method has been verified through four test 
systems with the obtained results compared to those from 
other methods. The result comparison has indicated that the 
proposed method can obtain better optimal solutions than 
other methods. Moreover, the proposed method has also 
implemented to determine the best compromise solutions 
for different cases. Therefore, the proposed ALHN method 
is an efficient solution method for solving multi-objective 
short-term fixed head hydro-thermal scheduling problem. 

 
 

Nomenclature 
 

a1s, b1s, c1s Cost coefficients for thermal unit s, 
ah, bh, ch Water discharge coefficients for hydro unit h, 
d1s, e1s, f1s NOx emission coefficients, 
d2s, e2s, f2s SO2 emission coefficients, 
d3s, e3s, f3s CO2 emission coefficients, 
PDk Load demand of the system during subinterval k, in 

MW, 
Phk Generation output of hydro unit h during subinterval k, 
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Fig. 1. Pareto-optimal front for fuel cost and NOx emission 

in Sub-case 1 of Case 1  
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Fig. 2. Variation of membership functions against weight 

w2 = 1- w1, w3 = w4 = 0 in Sub-case 1 of Case 1 

Table 9. The best compromise solutions for Case 3 with 
four objectives 

Weight 
factor Objective function Membership function µD 

w1 0.6 F1 ($) 96,295.4624 µ(F1) 0.7376
w2 0.1 F2(kg) 14,396.5261 µ(F2) 0.7599
w3 0.2 F3 (kg) 44,126.2322 µ(F3) 0.8679
w4 0.1 F4 (kg) 242,520.6672 µ(F4) 0.8092

0.00407

 
Table 10. Computational time for all test cases 

Case CPU (s) No. solutions
 1 (F1, F2) 34.18 21 

Case 1: 2 objectives 2 (F1, F3) 38.04 21 
 3 (F1, F4) 24.25 21 
 1 (F1, F2, F3) 64.99 43 

Case 2: 3 objectives 2 (F1, F2, F4) 53.86 43 
 3 (F1, F3, F4) 54.23 43 

Case 3: 4 objectives (F1, F2, F3, F4) 311.97 284 
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in MW, 
Ph

min, Ph
max Lower and upper generation limits of hydro 

unit h, in MW, 
PLk Transmission loss of the system during subinterval k, 

in MW, 
Psk Generation output of thermal unit s during sub-

interval k, in MW, 
Ps

min, Ps
max Lower and upper generation limits of thermal 

unit s, in MW, 
qhk Rate of water flow from hydro unit h in interval k, in 

acre-ft per hour or MCF per hour, 
rhk Reservoir inflow for hydro unit h in interval k, in 

acre-ft per hour or MCF per hour, 
tk Duration of subinterval k, in hours, 
Wh  Volume of water available for generation by hydro 

unit h during the scheduling period. 
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