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ABSTRACT

In this paper, we consider a relatively new two-machine flow shop scheduling problem where the
unit time WIP cost increases as a job passes through various stages in the production process, and
the objective is to minimize the total WIP (work-in-process) cost. Specifically, we study three special
cases of the problem. First, we consider the problem where processing times on machine 1 are identi-
cal. Second, the problem with identical processing times on machine 2 is examined. The recognition
version of the both problems is unary NP-complete (or NP-complete in strong sense). For each prob-
lem, we suggest two simple and intuitive heuristics and find the worst case bound on relative error.
Third, we consider the problem where the processing time of a job on each machine is proportional
to a base processing time. For this problem, we show that a known heuristic finds an optimal schedule.

Keywords: WIP Cost, Machine Flow Shop Scheduling, Heuristic Analysis
1. Introduction

In this paper we consider scheduling problems where the objective is associated with
the work in process (WIP). We assume that the value of the product and the WIP cost
increase as labor and material are added to a product. We call this new scheduling
problem a two machine scheduling problem with weighted WIP cost. A major change
from the classical flow shop scheduling problem is that the unit time WIP cost does
not remain constant.

Minimizing WIP costs is an important criterion for many manufacturing facilities.
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Level of WIP inventory is often considered as one of the measures for production
efficiency. While it is difficult to operate production lines without WIP inventory,
most companies try to minimize WIP [16]. Some companies intentionally keep WIP
inventory at work centers to improve utilization [18] or to hedge against due date
penalties. However, for most companies, reducing unnecessary WIP inventory is a
critical goal.

When the WIP cost per unit time of a job is constant throughout the manu-
facturing process, any scheduling problem where the objective is to minimize total
completion time also minimizes the WIP inventory. However, this type of regular
flow shop scheduling problems usually assume that WIP costs are equal and
unchanged throughout the entire production process. In reality, the WIP costs
increase while the production progresses in most industries or they may decrease in
some industries such as refining industry.

A typical example of the problem can be found in any discrete manufacturing
facility where there exists a sequential production process with multiple stages. For
instance, in a consumer electronics, say television, manufacturing facility there usu-
ally exist three stages in the production process and they are automatic insertion (AI),
manual insertion (MI), and final assembly (FA). During the Al stage, all small com-
ponents are inserted on a printed circuit board (PCB) by an automatic insertion
machine. Once the Al is finished, the PCB is moved to the next stage to be installed
with medium size components manually by employees. Then, it finally moves to the
next stage for the FA. Observe that as a WIP moves from one stage to a next stage, the
value of the WIP increases. This is because the WIP at one stage contains additional
valuable components and more labor hours compared to that at a previous stage.
Since inventory holding cost of an item increases proportionally with the value of the
item, the cost of a WIP at a particular stage should be different depending one the
degree of completeness of the WIP.

This work considers a flow shop problem where there are two machines. Hence,
this problem is a generalization of the two machine flow shop problem where the
objective is to minimize the total completion time. The recognition version of the two
machine flow shop problem is unary NP-complete (or NP-complete in strong sense)
[8]. Several studies focus on developing efficient algorithms (see [1, 6, 7, 11, 13, 17,
19]). A heuristic procedure based on selecting jobs in shortest total processing time

order is developed by Gonzalez and Sahni [9]. They show that the relative error of
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their procedure is bounded above by 2.

The two machine scheduling problem with weighted WIP cost is first introduced
by Yang and Posner [21]. They establish complexity of the problem and introduce
several simple and intuitive heuristics. Yang [20] extends the problem further by in-
troducing several variations of the problem and establishes their complexity. He also
considers the case where WIP cost decreases as production progresses.

In this paper, we consider three special cases of the two machine scheduling
problem with weighted WIP cost. First, we consider the problem where processing
times on machine 1 are identical. Second, the problem with identical processing times
on machine 2 is examined. The recognition version of the both problems is unary NP-
complete [20]. Hence, using efficient heuristics to solve the problems is a suitable
option. For each problem, we suggest two simple and intuitive heuristics which can
be easily utilized in practice and find worst case bounds on relative error. Third, we
also consider the problem where processing time of a job on each machine is
proportional to a base processing time. For this problem, we show that a known
heuristic, which is developed by Yang and Posner [21] to solve a general version of

the problem, actually finds an optimal solution.

2. Notation and Preliminaries

The parameters of the problem are
N =setofjobs ={1,2, -+, n}

M = set of machines = {1, 2}

M, =machine i for ieM

p; =processing timeofjob j onmachine i for ie M and je N.

The variables in our model are

o, = schedule of all jobs on machine i for ie M
o =schedule of all jobs = (0,, 0,)
C,(0) =completion time of job j onmachine 7 inschedule o for ie M and

jeN
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5,;(0) =start time of job j on machine i inschedule o for ie M and je N

Q,(0) = waiting time of job j before it starts processing on machine i in schedule
o forie M and je N

W (o) =workin process cost forjob j inschedule o for je N

o =an optimal schedule

z = value of optimal schedule ¢ .

When no confusion exists, we replace C, (o), 5,(0), Q;(0) and W (o) with
C;, S5, Q; and W, respectively. Welet [j] indicate the job in the j th position in
schedule o. For example, p,, Is the processing time on M, of the fourth job in

schedule o.

The standard classification scheme for scheduling problems is ¢, |, | o,, where
a, describes the machine structure, ¢, gives the job characteristics and restrictions,
and ¢, defines the objective [10]. We extend this scheme to provide for WIP costs by
using W, in the ¢, field. Following the standard scheduling classification schedule of

Graham et al. [10], we refer to the problem of minimizing the WIP cost in two ma-

chine flow shop where processing timeson M, are identicalas F2Ip, =p, | ZWJ
A schedule defines a job order for each machine and a permutation schedule is a

schedule in which every machine has the same job order. For F2 H ZW] , the jobs

are available at the start of the planning process. Also, no preemptions are allowed.

In a two machine flow shop system, there are four different types of WIP costs:
Type 1: Before being processed by the first machine (value of raw material).

Type 2: While being processed by M, (value of raw material + added components
at M,).

Type 3: Between being processed by M, and M, (value of raw material + added
components at M, +labor and depreciation of M,).

Type 4: While being processed by M, (value of raw material + added compo-

nents at M, +labor and depreciation of M, +added components at M, ).
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Let w, be the weight (value) associated with WIP cost Type i, for i=1,2,---,4
and we assume that w, Sw, <w, <w, . Completion time ofjob j is C,; =Q, +p,; +
Q,; +p,;- It may be true that the actual weight varies depending on the job. But, in

most flow lines the jobs seem to be similar due to the repetitive characteristic of the
flow line. Consequently, a reasonable model is that the cost is proportional to the

time spent. Thus, the WIP cost for job j is
W, =le1j+w2p1j +w3Q2j+w4p2j' )

Note that w,p,; and w,p,, are fixed regardless of the job sequence. As a result,

our goal is to minimize Z;l(w]QU + stz/‘ ).

The heuristic procedures we develop use the following well known rule to

determine the order in which the jobs are processed [9].

SPT (Shortest Processing Time): When M, becomes available, an unscheduled

job with the shortest total processing time is selected for processing.

Unless otherwise noted, we assume that the jobs are indexed in SPT order, ie.

Py +P2j Spl,jﬂ +p2/j+1 for j= L2, n-1.

3. Problem Statement

In this section, we specifically introduce each of the special cases considered in the
paper. Also, we describe how this paper is organized around these three special cases.

The first special case considered in the paper is the problem where processing
times on machine 1 are identical, and the second special case is the problem with
identical processing times on machine 2 is examined. More formally, the first case is
the problem of minimizing the WIP cost in two machine flow shop where processing

times on M, are identical, F2lp, =p,| ZW] and the second case is the problem of

minimizing the WIP cost in two machine flow shop where processing times on M,
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are identical, F2Ip, =p, IZW] A typical example of these special cases can be

found in a multi-stage manufacturing environment. In the previous example of
consumer electronics manufacturing, two different models of TV sets, which belong
to the same product lines and so produced in the same production line, may have an
identical processing time at MI stage but they may have different processing times at
FA stage and vice versa.

The recognition version of the both problems is unary NP-complete [20]. Hence,
using efficient heuristics to solve the problems is a suitable option. In Sections 5 and 6,
we introduce lower bounds for each of the problem. In Section 7 and 8, we suggest
two simple and intuitive heuristics which can be easily utilized in practice for the two
problems and find worst case bounds on relative error. For each heuristic, we find
either a tight upper bound or an asymptotically attainable upper bound on relative
error for the first two special cases.

The third special case we considered in the paper is the problem where pro-
cessing time of a job on each machine is proportional to a base processing time. For-

mally, it is the problem of minimizing the WIP cost in two machine flow shop where

SP1; = Py for all je N and s>0, F2 H ZW/ An important practical ‘situation where

this occurs is when each operation consists of several identical tasks. For example,
consider a two-step process where the first machine makes holes on a board and the
second machine places a component in each hole. The processing time on each
machine depends on the number of holes and the number of components that are put
into the holes. Then, the processing time of a job on one machine is proportional to
the processing time of the job on the other machine. Another example is when the
processing time of a machine is proportional to a quantity associated with an order
from a customer.

Early work on this problem appears in Ow [14]. Other works include Allahverdi
[2]. Choi et al. [4], Cheng and Shakhlevich [3], Hou and Hoogeveen [12], and Shak-
hlevich et al. [15].

In Section 9, we introduce another known heuristic for the third special case and
finally in Section 10, we show that this heuristic finds an optimal schedule when the
processing time of a job on one machine is proportional to processing time of the job

on the other machine.
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4. Basic Results

We begin by reviewing complexity of problems F21p, =p, | ZW} and F2lp, =p,|
ZWI The following theorem shows the complexity of the two special cases of
problem F2 ” ZWJ

Theorem 1 ([20]) Problems F2\p, =p, 1> W, and F2\p, =p,| > W, are unary NP-hard.

We now discuss a couple of optimality properties. The first result shows that

unlike most flow shop problems, the optimal solution to F2 ” ZW/ may not be a

permutation schedule.

Lemma 1 ([21]) There exist instances where there is no optimal permutation schedule for
problem F2| YW..

The next result shows that some optimal schedules for problem FZ” ZWJ

requires inserted idle time on M, . As a result of Lemma 1, we may need to specify a

schedule for each machine when necessary.

Lemma 2 ([21]) There are instances of problem F2“ ZW} where an optimal schedule re-

quires inserted idle time on M, .

As a result of Lemma 2, when we describe a schedule, we may need to specify
the start time (or completion time) of each job as well as a job order when necessary.

Having inserted idle time is an important distinction between problems F2|| ZC],

and F 2” ZW/ For problem F 2" ZC[,, there always exists at least one optimal per-

mutation schedule without any inserted idle time on M, [5].

5. Lower Bounds for F2lp, =p 3" W,

We establish two lower bounds on the value of a schedule for problem F2| Py =P
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ZW] These lower bounds are used in the analysis of heuristics. Both bounds are

based on the condition that there is no wait for machine 2. The first bound assumes

that each job is processed as quickly as possible on M, .

Lemma 3

L= wln(” —1)P1

n
SN W, D
j=1

Proof. From the definition of the WIP costs,
vv[j] 2w, (j-Dp, +w,p, TWPy

for je N. Since jobs are ordered such that p, +p.. <p +p, . for j=1,2, .-, n—-1
] ] pl pZ} pl pZ,]+1 ]

(or indexed in SPT order),

z w,n(n—1)p u
ZWJ 2—]—2—1+wzrzpl +w4;p2,.. UJ

j=1

The next bound assumes that each job is processed as quickly as possible on M, .

Lemma 4

n=1 n
L2 _ 3
M =w Y (n — )Py +w,np, +w, szj.
= =

Proof. Because w, <w, <w,, it is preferable to have a job wait before M, rather

than M,.Thusfor je N,

j-1
Wiy 201D+ D oy =P+ W0,p, + 0,y
=1

Since the jobs are indexed in SPT order,

n-1 n

ZWJ 2w, Z(n—j)pzj +w,np, +w4Zsz- D
j=1 j=1 =1
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Weuse z"' and z'* tobound z' from below.
6. Lower Bounds for F2ip, =p, |3 W,

In this section we establish another couple of lower bounds on the value of a schedule

for problem F2lp, =p, IZWJ These lower bounds are used in the analysis of
heuristics for problem F2lp, =p, IZW] The analysis is similar to that in the

previous section.

Lemma5

n=1 "
L3 _ .
z7 =w, E (”‘])ij +w, E py; WP,
i1

j=1

Proof. From the definition of the WIP costs,
j-1
VV[/.] 2 w, ;pl[k] +wzp1m +w.p,

for je N.Since the jobs are indexed in SPT order,

n=1

QW 2w, D (=, +w, ) py +wnp,. O
j=1 j=1 =1

Lemma 6

wn(n—1
L4 =wnp,, + 1 (2 )pz

M
+ (wz —w, )ZPU Fwnp,.
j=1

Proof. Because w, <w, <w,, it is preferable to have a job wait before M, rather

than M,.Thusfor je N,

Wi 2 @lpuy + G =1p, =Py 1+ WPy +20,P2-
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Since the jobs are indexed in SPT order,

i
ZW; 2w np,, +

j=1

w,n(n-1)p L
1 5 2 +(w2~w1);pl}.+w4npz. ]

Weuse z and z'* tobound z' from below.

7. Heuristic with No Inserted 1dle Time

In this section, we introduce and analyze the worst case behavior of a heuristic. This

heuristic is presented in Gonzalez and Sahni [9] to solve problem qu ZC}.. We
apply the heuristic to problems F2Ip, =p, IZW] and F2lp, =p, |ZW] . The heu-

ristic processes jobs in SPT order and does not allow any inserted idle time. Con-
sequently, it is a reasonable choice for managers who are interested in maximizing

machine utilization.

Heuristic G5
0. Reindexjobs so that p,, +p, <p, ., +p,,,, for j=1,2,.- n-1.

1. Schedule job 1 such that C,, =p,, and C, =p, +p,.
Schedule jobs 2, 3, -+, n in index order on M, and M, such that CU =C1,}._1 +py;
and Cz,’ = max{Cz,/wl, Clj}+p2/, for j=2,3,.-, n.

2. Calculate W] for j=1,2,--,n.

Output 3 " W, and stop.

Heuristic GS runs in Of{nlogn) time. The resulting solution is a permutation
schedule where there is no inserted idle time on M,. Let ¢® be the schedule

generated by Heuristic GS and z® be the cost of schedule ¢® . We analyze

Heuristic GS and find an upper bound on the relative error.
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Example 1. Consider a two machine, three job problem where w, =w, =1, w, =w,
=15, p,=p,=1, p,=5,and p, =p,, =p, =3.5. Heuristic GS generates the sche-
dule ¢ =(1, 2, 3) where there exists no insertéd idle time on either machine (see
Figure 1). The cost is z% = Z;l(leli +w,py, +w,Q, + w,p,;)=w, (0+1+ 2)+w,(1+1
+5)+w,(0+2.5+1)+w,(3.5+3.5+3.5)=31. However, an optimal schedule o =Q1,2
3) has inserted idle time of 1 on M, before job 2 starts. The cost of of the optimal

scheduleis z' = zb](0+2+3)+w2(1+l+5)+w3(0+1.5+0)+w4(3.5+3.5+3.5) =30.

M, 1 2 3 &%
M, 1 2 3
M| 2 3 o*
M, 1 2 3

1 2 3 445 7 8 11.5

Figure 1. Example 1

7.1 Analysis for F21p,, =p, 12 W,

We first analyze the worst case behavior of Heuristic GS for problem

F2lp, =p,| ZW] . The following theorem establishes a tight bound of Heuristic GS.

Theorem 2
n-1 n
wn(n—T1)p, +2w, Z(n - j)pzj +2w,np, +2w, sz/‘
2972 < - i

n=1 .

w, max{n(n-1)p,, 2 (n—j)p,;} +2w,np, +2w, D1
j=1

1

Further, this bound is tight.
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Proof. From Lemmas 3 and 4,
z 2 max{z", z"*}. 2)

By the construction of GS,

j-1

VV,-(O'GS) sw,(j-Dp, +w,p, +w3zp2k TW,p,;
=1

for je N.Therefore,

n w n(n — 1) n-1 . n
ZVV/,(O’GS)Sl—;i+w2np1+w3Z(n—])p2j+w4Zp2j. (3)
j=1 j=1 j=1

From (2) and (3),
Gs Gs
LIPS
z  max{z", z"?)

n-=1 n
wn(n—1)p, +2w, Z(n _j)pZi +2w,np, + 2w42p2].

j:] j:]

2max{z*!, z?}

n-1 n

wn(n-1)p, +2w, Z(n _j)sz +2w,np, + 2w4Zp2j

j=1 j=1

n-1 H *
w, max{n(n—1)p,, ZZ(n - j)Pz, b4+ 2w,np, +2w, Z P,
j=1

j=1

Now, we show that the bound is tight. Consider the instance where there are n

jobs with processing times p,; =0 and p,; =1 for j=1,2,---,n. Since p,; +p,; =
P, +p,, for all jobs j, ke N, any job sequence can result from Heuristic GS. Sup-
pose that permutation schedule ¢ =(1, 2, ---, n) where there exists no inserted idle
time. Then, the solution value is z% =w,(n* —n)/2+w,n. An optimal permutation

schedule 0" =(1,2, -, n) has the same sequence as ¢ but schedule jobs on M,
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such that there is no wait time before a job on M, processes. Then, solution value

z =w,(n* —n)/2+w,n. Consequently, the relative error is [w,n(n—1)+2w,n}/[w,n

(n-1)+2wn].
Observe that for this example, Z;:(n— Ny = (n* —n)/2. Hence, max{n(n—1)p,,

22;’:(71—]‘);92],} =max{0, n> —n} =n*> —n . Thus,

n-1 n
wn(n-1)p, + 2w, Z(n - f)sz +2w,np, +2w, szj
j=1 j=1
n-1 i
w, max{n(n—1)p,, 2 (n-j)p,,} + 2w,np, +2w, Y p,,

j=t =1

_wyn(n—1)+2w,n
wln(n—1)+2w4n'

Therefore, the bound is tight. [

Note that the bound has a minimum value of 1 when w, =w, .

Remark 1 ([21]) For problem F2“ ZW] , the best bound, which is asymptotically attainable,

of Heuristic GS is 2 when w, =w, .

7.2 Analysis for F21p, =p, | 3W,

We analyze the worst case behavior of Heuristic GS for problem F2Ip, =p, | ZW] .

The procedure of the analysis and the result are similar to those for problem

F2lp, =p,| ZW] . The following theorem establishes a tight bound of Heuristic GS.

Theorem 3

n-1 n
2w, Z(n - j)P1; +w,n(n-1)p, +2w, Zpl]. +2w,np,
2% /7 < nk i~

n=1

2w, maX{Z(” - j)plj c(n=1)p, [ 2+np, - zplj F+2w, ZPU +2w,np,
j=1 =1

j=1

Further, this bound is tight.
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Proof. From Lemmas 5 and 6,
z 2 max{z"®, z"}. 4)

By the construction of GS,

j-1

VV,'(O-GS) Sw, Zplk +w2p1,' +w3(j—1)p2 +w,p,

k=1
for je N. Therefore,

n n-1 . n w.n(n _1)
ZV\/j(O'GS)Swlz(n—])pli +wZZpl). +—3%+w4np2. (5)
j=1 j=1 =1

From (4) and (5),

GS

GS
i,— <2
z max{z"?, z'*)

-1 n

2w, Z(n_j)plj +w,n(n-1)p, +2wzzp1j +2w,np,

_ j=1 j=1

2max{z"®, z**}

n—1

2w, Z(n—j)plj +w,n(n-L)p, + 2w22p1j +2w,np,

1 =

n=1

2w, max{Z(n—j)p”, n(n-1)p, /2+np,, _ZpquszPl; +2w,np,
. =

=1 =1

Now, we show that the bound is tight. The instance we use is the same as the one

in Theorem 2. Suppose that permutation schedule o =(1, 2, -, n) where there exists
no inserted idle time. Then, the solution value is z = w,(n* —=n)/2+w,n . An optimal

permutation schedule ¢ =(1, 2, -+, n) has the same sequence as ¢® but schedule

jobs on M, such that there is no wait time before a job on M, processes. Then,

solution value z" =w,(n* —n)/2+w,n. Consequently, the relative error is [w,n(n-1)
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Rw,n]/[wn(n-1)+2w,n].
Observe that for this example Zf:(n —j)p,; = 0. Hence,

Zmax{z;:(n =)p,;, n(n=1)p, [ 2+np,, ~ Z;; py;} = 2max{0, (n* —n)/2}=n*-n. Thus,

n-1 "

2w, Z(n = py +wyn(n=1)p, + 2w, Z p,; +2w,np,

71 j=1

-1 1

2w, max{Z(n =Py, nn=1p, [ 2+np,, - z Py} +2w, Z py; +2w,np,
i=1

j=1 =1

_wyn(n=1)+2w,n

wln(n—l)+2w4n'

Therefore, the bound is tight. []

8. Heuristic with No Wait Time

In this section, we introduce and analyze the worst case behavior of a heuristic that is
a modification of Heuristic GS. This heuristic is first introduced by Yang and Posner

[21]. Since w, £ w,, we try to improve the schedule by eliminating the waiting time
before M, . Similar to Heuristic GS, Heuristic NW processes the jobs in SPT order.

We now formally describe Heuristic NW.

Heuristic NW
0. Reindex jobs so that p, +p, <p, ., +p,., for j=1,2,-, n-1.

1. Schedule job 1 such that C\, =p,, and C, =p, +p,, .
Schedule jobs 2,3, ---, n inindex orderon M, and M, such that
CU = max{CLi_1 +Py CZH} and C, =C, + Py for j=2,3,--,n.
2. Calculate W, for j=1,2,-, n.

Output 3" W, and stop.
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Heuristic NW runs in O(nlogn) time. The resulting solution is a permutation
schedule where there is no wait time before a job is processed on M, . Let o™ be

the schedule generated by NW and z"" be the cost of schedule ¢"". We analyze

Heuristic NW and find an upper bound on the relative error.

Example 2. Consider the same instance from Example 1. Heuristic NW generates a

schedule o™ =(1, 2, 3) where there exists inserted idle time of 2 on M, before the

start of job 2 (see Figure 2). Note that there exists no wait time on M, . The solution
value 2% =3 (,Q, +w,p, +W,Q,; +w,p, ) = w,(0+3.5+4.5)+w,(1+1+5)+w,(0+

0+0)+w,(3.5+3.5+3.5)=30.75.

M, 1 2 3 &0
M | 2 3
M, 1 2 3 o*
M 1 2 3

i 2 3 445 8 9 11.5 125

Figure 2. Example 2

8.1 Analysis for F2!p,; =p 1D W,

We first analyze the worst case behavior of Heuristic NW for problem F2Ip, =p,|

D W.. The following theorem establishes a tight bound of Heuristic NW.

Theorem 4 If there exist jobs q and r suchthat p, <p, <p, for q,re N, then

n-1 "
w [@n—i)(i=1)p, +2D (n=[)p, 1+ 2w,np, +2w0, > p,.
NW /Z* j=i j=1

IA

z

=1

w, max{n(n-1)p,, 22(71 - j)pzj} +2w,np, + 2w, Z Py
j=1

I
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where p,. is the smallest job to be greater than p, for ie N. Otherwise, 2" /z =1.

Further, this bound is asymptotically attainable.

Proof. From Lemmas 3 and 4,
z" 2 max{z"', z"*}. (6)
Since there is no waiting time before M, in o™

j-1

W.(a™) < w,(p, +Zmax{r72k/ p)=wp, tw,p, +w,p,
j- .
Z x{py Py} 0,0, + W, Py 7)
k=1
for je N.Now, we need to consider three different cases.

Casel. p, 2 max,eN{Pz]}

Since P1 2 maneN{pzj} ’ maneN{pzk/ Pl} = Pl . From (7)/
V\/j(UNW) < wl(j_l)pl Tw,p, +w4p2j

for je N.Then,

1 w.n(n-1) 1
ZWI,(O'NW) < —1T&+w2np] +w42p2i.
. <

Since z'' =w,n(n-1)p, / 2+w,np, +w4z;'=lp2]., 2z =1.

Case2, p < mm,eN{Pz]}

Similarly, we can show that ZL IVV].(O'N "y=2" . Hence, z"/z =1.
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Case 3. There exist ¢ and r such that Poy <P, <P, for g, reN.

Suppose that p,, is the smallest job to be greater than p, for ie N. From (7), for

j=11 2/ tty i/
VV,‘(O-NW) Sw,(j-1p, ;"wzp1 +w,p,,;
and for j=i+1,i+2,--,n,
-1
VVJ'(O'NW) Sw[(i-D)p, +Zp2k]+w2p1 TW,p,,;
k=i

By adding up W] ’ s, we have

ZW (c™) < M+Z(n Dy 1+ w,np, +w4ZPz]-

2

] i

From (6) and (8),

NW NW
z z
<

z max{z", z

LZ}

n=1

w,[@n=i)(i=1)p, +2 (1= j)p,;1+2w,np, +2w42p2]

J=i j=1
2max{z"', z*?}

n-1

w, [2n—i)(i~1)p, +2(n-)p,; 1+ 2w,np, +2w4sz,
j=i j=t
n—1

w, max{n(n-1)p,, ZZ(n NPyt +2w,np, +2w42p2]

j=1

(8)

Next, we show that the bound is asymptotically attainable. Consider the instance

where there are 2m jobs with processing times py=1for j=1,2,-,2m, p,

=0 for

j=1,2,--,m, and p2i=2 for j=m+1, m+2,---, 2m. Since P, =0 for j=1,2,---, m
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and p,; =2 for j=m+1, m+2, -+, 2m, jobs with p,, =0 must be processed first. Sup-
pose that permutation schedule o™ =(1, 2, -+, 2m). Then, the solution value is z"" =
w, (2.5m* —1.5m)+2w,m+2w,m . An optimal schedule for the problem can be dif-
ferent with specific values of w,’s and m . But for a problem with sufficiently a large
value of m, an optimal permutation schedule o =(m+1,1,m+2,2,---,2m, m) has
solution value z' =w,(2m* —m)+2w,m+w,m+2w,m . Consequently, the relative error
2" /2" goesto1.25as m—>oo.

Observe that for this example i =m+1 and so (2n—i)(i—1)p, = Bm—1)m = 3m* ~

m. Also, n(n-1)p, = 2m(2m—1) = 4m* -2m and Z;’:(n— j)p,; =m* —m. Hence, max

{n(n-1p,, 22;’:(71— )Py} = maxidm?® —2m, 2m* ~2m} = 4m® —2m . Thus,

n—=1 n

w,[@n—i)(i=1)p, +2D (n- NPy 1+ 2w, np, + 2w42p2].
j=1

=

-1 1

w, max{n(n-1)p,, ZZ(n _j)sz}+ 2w,np, + 2w42p2}.

J=1 j=1

_w, (5m* =3m)+4w,m+4w,m

w, (4m* = 2m)+ dw,m+ 4w, m

-1.25

as m — oo. Therefore, the bound is asymptotically attainable. []

Remark 2 ([21]) For problem F2 ” ZW] , the best asymptotically attainable bound of Heu-

ristic NWis 2/ (a+p)22 where a=mingenip,; Py} and B =maxjendpy;. v}

8.2 Analysis for F2!p, =p, 1> W,

In this subsection, we analyze the worst case behavior of Heuristic NW for problem
F2lp, =p,| ZW] . The following theorem establishes a tight bound of Heuristic NW.

Theorem 5 If there exist jobs q and v suchthat p, <p,<p, for q,re N, then
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n=1 n
w,[2np,, + 22(71 —p,; +@n-i+1)(i-2)p, ]+ 2w, Zplj +2w,np,
j=1

2 < Lo

n=1 i

2w, maX{Z(” - j)plj sn(n=1)p, [ 2+np, - Zplj} +2w, Zp]j +2w,np,
1 =

j=1

where p,; is the smallest job to be greater than p, for ie N.Otherwise, z"" /2" =1.

Further, this bound is asymptotically attainable.
Proof. From Lemmas 5 and 6,

z' >max{z"?, z"}.

Since there is no waiting time before M, in o™,

j-1

W™ sw,(p, + Y maxip,, p, ., ) -w,p, +w,p, +w,p,

k=1 .

for je N.Now, we need to consider three different cases.

Casel. p, 2> maneN{P1f}'

Since p, 2 max;en{Py;}, maxienip,, Py} =p, . From (10),

M/j(dNW) Swilpy +(]'—1)P2]—ZU1P1/ TW,py; WP,

for je N.Then,

D [ZP” +721(ﬂ—1);72] +(wz _wl)zplj Twnp,.
j=1

j=t

Since z"' =wn2p, +(n-1)p,1/ 2+ (w, —w])Z;=l prwnp,, 272 =1,

Case2. p, < mil’ljeN{plj}'

(10)
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Similarly, we can show that Z;’zle(oﬂw) =2z" Hence, 2" /2 =1.

Case 3. There exist ¢ and r suchthat p, <p,<p, for q,7eN.

Suppose that p,; is the smallest job to be greater than p, for ie N. From (7), for
j=1,2,--,i-1,

W.(e™) <w,[p,, +(j-1)p, ~p,; 1+ w,p,; +w,p,
and for j=i,i+1,---, n,

j-=1

VV]‘(GNW) <w,[p, +({-2)p, + Zpl,kﬂ _plj]+w2p1j TW,p,

k=i-1

-1
= wl[pll +(i“2)Pz +Zplk]+w2p1j +W.P,-
k=i

By addingup W,'s, we have

n=1

ZW; (™)< w, [np,, + Z(n - j)pl]_ +@2n—-i+1)(i-2)p, / 2]+ w, Zpli +w,np,. (11)
j=i j=1

j=1

From (9) and (11),

NW NW
z z
<

z  max{z"®, z"}

n-1 7
w,[2np,, +2) (n—j)p,; +@n-i+1)(i=2)p, ]+ 2w, p,; +2w,np,

= j=i j=1

2max{z", z**}

n-1 n

w,[2np,, + ?_Z(n - j)P1j +Q@2n—i+1)(i-2)p,]+2w, Z Pt 2w, np,
j=i

= =1

n=1 i

2w, max{Z(”_j)p1j/ n(n—=1)p, / 2+np,, _Zplj}+2wzzp1j +2w,np,
=

j=1 j=1



90 YANG

Next, we show that the bound is asymptotically attainable. Consider the instance

where there are 2m jobs with processing times p,; =0 for j=1,2,--,m, p,, =2 for
j=m+1,m+2,.--,2m, and p, =1 for j=1,2,---, 2m. Since p; =0 for j=1,2,---,m
and p,; =2 for j=m+1, m+2, -, 2m, jobs with p,. =0 must be processed first. Sup-
pose that permutation schedule o™ =(1, 2, ---, 2m). Then, the solution value is z""
=25w,(m* —m)+2w,m+2w,m. An optimal schedule for the problem can be dif-
ferent with specific values of w,'sand m . But for a problem with sufficiently a large
value of m, an optimal permutation schedule ¢ =(1, m+1,2, m+2,---, m—1, 2m)
has solution value z* = 2w, (m* —m)+ 2w,m+w,(m~1)+2w,m. Consequently, the re-
lative error z"" /2" goesto 1.25 as m —>oo.

n-1
j=i

Observe that for this example i = m+1. Hence, Z (n=jp,; = m* —m and (2n-

i+1)(i-2)p, =3m(m~1)=3m* —3m. Also, Z;:(n—j)plj' =m’—m and n(n-1)p, = 2m
n=1 . n

(2m-1) = 4m* -2m . Hence, 2 max{zi:l(n—])p”, n(n-1)p, /2+np, —ZH p,;}=2max

{m®> ~m, 2m* —3m} = 4m* —6m . Thus,

n=1 il

w,2np,, +23 (n=j)p,; +Qn—i+1)(i-2)p, 1+ 2w, )" p,. +2w,np,

=i =1

n—=1 "

2w, max{Z(n—j)pU, nn="1)p, /2+np,, —ZPUHszZP]; +2w,np,
=

j=1 j=1

_w, (5m* —5m)+4w,m +4w,m

w, (4m* —6m)+ 4w, m + 4w, m

—1.25

as m — o. Therefore, the bound is asymptotically attainable. []

9. Heuristic with Minimum Waiting Cost

We introduce another heuristic which finds an optimal schedule for any fixed job

sequence. The heuristic is first developed by Yang and Posner [21]. We use this
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algorithm to optimally solve a special case of problem F2 H ZW/ where sp,. =p,;

forall je N and s>0
The procedure begins with the schedule found by Heuristic GS. Since there exists

no inserted idle time in Heuristic GS schedule, there may exist waiting time before

M, . Starting with the last job, the procedure tries to eliminate those waiting times by

delaying jobs as long as the solution value improves. The value of ¢ provides the

size of the block of jobs that are delayed only on M,. Now, we formally describe a

procedure to solve F2 " ZW] when the job sequence o is specified.

Algorithm FIXED
0. Input the job order.
Schedule the jobs using Heuristic GS. Set C,;, to be the completion time in this
schedule of job [j] onmachine i,for ie{l,2} and jeN.
1. Set C][n] = sz] ~Popm -
Set j=n and t=0.
Go to Step 4.
2.8et Cy; = min{Cypy =Pyjuns Cajy=Pay}-

If Cpjy+py; =€ thenset t=0 and go to Step 4.

2j1’
Otherwise, set t=t+1.

3.If (n—j+1)/t=w,/w,, then go to Step 4.
Otherwise, set d = I k= jod oo -1 {Cz[k] “Popg (Cl[k+1] -pl[km) I C2[k] “ Porx _(Cl[k+l] -
P1[k+1]) >0} and #'= argmink=j,j+1“./j+t—l {CZ[k] ~ Py _(Cl[kH] - pl[k+1]) —d=0}-j.
Set C,,,=C

i = Cyg+d for k=j, j+1, ., j+i-1.
'Set Cpy=Cyqtd for i=1,2 and k=j+t, j+t+1, -, n.
Set t=t".

4.1f j=2, then output schedule and stop.
Otherwise, j=j-1.

5 1If n/(t+j)<w3/w1,thengotoStepZ.

Otherwise, set Cuk] = min{C”M] = Pageryyr CM —pZ[kl} for k=j,j-1, ---, 2.
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Output schedule and stop.

The time requirement of Algorithm FIXED is O(nlogn). By using FIXED, we now

present the following heuristic.

Heuristic FB
0. Reindex jobs so that p, +p,; <p, ., + Py for j=1,2, -, n-1.

1. Call Algorithm FIXED.
2. Calculate W} for j=1,2,---,n.

Output Z;;]Wj and stop.

Since Algorithm FIXED requires O(nlogn) time, the time requirement of FB is
O(nlogn) time. Let o*® be the schedule generated by Heuristic FB and z™ be the

cost of schedule o'®.

Example 3. Consider the same instance from Example 1. Heuristic FB generates a

schedule o™ =(1, 2, 3) where there exists inserted idle time of 1 on M, before job 2
starts. In this case, solution value z"* = Zi 1(w1Q1,- tw,p,;+ wSsz +w 4pzj) =w,(0+2+

3)+w,(1+1+5)+w,(0+1.5+0)+w,(3.5+3.5+3.5) = 30. For this instance, FB generates

an optimal schedule.
10. Proportional Machines

In this section, we consider a special case of problem F2 ” ZWI . We examine the
class of instances where sp, =p, forall je N and s>0. For these instances, the

processing time of a job on each machine is proportional to a base processing time.

In this section, we assume that the jobs are indexed so that p, <p,<--<p, .
We establish the optimality of Heuristic FB for F2 “ ZWJ when sp,; =p, for all

je N and s>0. Before we start the analysis we first review a known property of
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FIEXED.

Theorem 6 ([21]) Sitppase that a job sequence is given. Then, Algorithm FIXED generates

an optimal set of start times.

From Theorem 6, we need to establish only that an SPT job sequence is optimal for
the problem. The next set of results establishes the optimality of FB.

Lemma 7 Heuristic FB finds an optimal schedule if sp,; =p,; forall je N and s<1.

Proof. Since 0<s<1, p, 2p, . Also, since sp, =p, for all jeN, an SPT job
processing order implies an SPT job processing order on M, . Thus, FB schedules jobs
in SPT order. There is no inserted idle time on M, because p, , 2p, for

je {1, 2,---, n=1}. Since jobs are sequenced in an SPT order and there does not exist

any inserted idle time on M, z;’:}Tu‘ is minimized. Also, T,; =0 for all je N

because p, 2p, forall je N.Therefore, the result holds. [

For the next three lemmas, we assume that there exists an optimal schedule &
where the job sequence is not SPT. We let [ and ¢ be the last pair of jobs in &
such that t immediately precedes ! and t>I. In the next two lemmas, we show

that inserting t after [ givesaschedule ¢’ thatisatleastasgoodas & .

Lemma 8 Heuristic FB finds an optimal schedule if sp,, =p,. for all je N, s>1, and
C,(5)=5,(5).

Proof. Since p,, <p, <p, and C, (G)=S5,(F), we have that C,,(F)=5,(5). In o,
let S,,(0”)=5,(5), 5,(0")=5,(&), 5,(c")=C,(c"), and S, (6") = C, (). This schedule
is possible because p, <p, and p, <p,. Because C, (6")=C,(F), and C, (6)=C,,

(6), thejobsin N\{/, t} have the same completion times inboth & and o’.

Since p,, <p,,, we have that Q (3)+Q, (F)>Q,(6)+Q,,(¢). Further, Q, (6" =
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Q@)= (py, — 1)) and Q,(0')=Q,,(8)+(p, —p,). Since p, <p,,, we have that Q,
(07)+Q,,(0)<Q,(6)+Q,,(0). U]

When s>1 and C,(0)<S5,(F), there are two basic situations depending on
whether p,, ~p,, is no larger than or greater than (), (5). We consider the scenario
where p, —-p,, <Q,,(6) inLemma 9, and the one where p,, -p, >Q,,(6) inLemma
10. When p,, —p,, £Q,,(0), the other jobs in the schedule are not delayed as a result

of inserting job t after . This situation is shown in Figure 3.

Q|

o*

Tim —————p

Figure 3. An example where p, —p,, <Q,,(5)

Lemma 9 Heuristic FB finds an optimal schedule if sp, =p, forall je N, s>1,

Cn(a) < Su(a) , and Py =P < QZI(E) :

Proof. Because C,,(0)<S,(0), C,(6)=S5,,(0). Otherwise, we can construct a better

schedule by delaying job ¢t on M,.

In O'" let Slf(o-,) = min{Cu(a") —Pu-s Clt(a)' 521(5)+ Py — Py b Py Szl(o-’) = Szr(a) 4
S, (6" =min{C,(5), 5,,(&)+p,1—p,, and S,(0")=S5,,(&)+p, . Thus,

Q,(0)+Q,(0)=5,(0)+S5,,(0)
< Cn(a)  2Th Cu(a) =Py
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=5,(8)+S5,(0)
=0Q,,(0)+Q,,(0).

Consequently, the waiting cost before processing on M, is no larger in o’

thanin &.
Because Q,,(6')=5,,(0”) and Q,,(0")=5,,(0"), we have that Q, (") = min{Q, (&)

Py = Pur Qu(0) +py, Qu(8) +pyl—py, and Q(0')=min{Q, (5) + p,,,Q,,(5) +p, +
pzt}_plt . Also,

ta(a) Py~ P lf le(o—,) = Q“(E)— Py

sz(o-,) =10, if QU(OJ) =Q,(0)+p, —py
Py = Pa- if Qll(a,):Qlf(6)+p21 ~Pu
and
N o Qu(B)+py =Py, if Q,(07)=Q,(8)+p,, ~ Py,
Qﬂ(o- ) {0/ lf Qu(o-’) = Q1,(6:)+ Pa-

For each of these situations, it can be shown that Q,,(¢")+Q,,(6") £ Q,,(5)+Q,,(5) .
Note that C,,(0")=S5,,(¢")+p,, = min{C,,(5), S,,(5)+p,}<C,(F). Also, C, (o) =
S, (G)+p, +p, =C,,(F). Consequently, the times that the jobs in N\{/, t} are pro-

cessed in & and ¢’ areidentical. []

o*

Tim S

Figure 4. An example where p,. ~p,, > Q,,(5)
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When p,, -p, >Q,(5), if t is inserted after [, then it is possible that jobs

following job t are delayed. This could increase the solution value. This situation is
shown in Figure 4. As a result, job t is delayed further in Lemma 10 to make sure

that a new schedule is at least as good as & .

Lemma 10 Heuristic FB finds an optimal schedule if sp, =p, for all je N, s>1,
C,(8)<S5,(0), p,—Py>Q,(0), and t=I+1.

Proof. Because C,,(5)<S,,(G), we have that C, (5)=S5,(F) . Otherwise, delaying job
t on M, produces a better schedule. For i, je N, suppose jobs i and j are pro-

cessed consecutively in ¢ .

Let o’ be the schedule where job ¢ is inserted after I, and S,(0")=C,,(5)-p,,
~Q,,(), S,,(0")=5,,(8), 5,(6")=C,(0), and S, (6")=C, (0"). Because Q,(c')=S,
(6 and Q,,(6”)=S,,(c"), we have that Q, (¢")=Q,,(8)+p,, —p,, —Q,(F) and Q, (¢
=Q,(G)+p, —Q,(8). Also, Q,(6)=Q,(5) and Q, (c)=0.

Since  Q,/(0)=5,(5)-C,(0)=(Q,(O)+p;, +P,)—(Qu(@) +py).
Q(6)+Q,,(6) = Q,(B)+py, — Py = Qu(8) +Q,,(5) + Py, — Qy(5)
=0, (0)+py, —Qy(0) —p, +Qy(0)
<Q(6)+Q,,(0).

Thus, the cost associated with jobs ! and ¢ decreases when f isinserted after I.
Further,

C,(0)=Q, (o) +p,
=0Q,(0) +2p, - Q,(0)
<5,(0)+ P, —Qy(0)
=C,(0),

and
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C,(0)=Q, (o) +py, + 1y,
=Q,(G)+p, ~Q,(G)+p,, +p,
=(5,,(8)+ Py, +Pa +P2) - Qu(@) 41y, ~ Py
= C, (@) =Qu(@)+P,, ~ Py

As a result, job t completes p,, —Q, (5)—p,, laterin ¢’ thanjob/doesin & .
Now, p,.., 2p, > P, +Q,(F) implies that C,(F)=5,,,,(F). Otherwise, delaying

job I or expediting job t+1 produces a better schedule. As a result, the idle time on
M, afterjob [ is

Pin "Qy(ﬁ) Py 2 Py - sz (0)- Pay-

Hence, job t can be processed later on M, by p, ., -Q,,(6)-p,, without delaying
job t+1 or any otherjobs. []

Theorem 7 Heuristic FB finds an optimal schedule if sp,, =p,, forall te N and s>0.

Proof. From Lemmas 7, 8, 9, and 10, the only situation that still has to be considered is
when s>1, C (G)<5,(5), p,, ~Py>Q,(F), and t=]+2. Under these conditions,

job t isinserted afterjob f-1.

When Q,,(0")=0, depending on the situation, the proof is similar to the proofs

M, t L o o t-1 -
t l /+1 s e e r-1
M, [ 1H+1 . . . -1 t
o'
M, / +1 . . . -1 1
Tim —_—

Figure 5. An example where job ¢ is inserted after job f~1
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of Lemmas 9 or 10. When Q, (¢")>0, the proof is also similar to the proofs of
Lemmas 9 or 10. However, some jobs in {I+1,[+2,.--,t-1} are delayed on M, to

offset the increase of the solution because Q,,(¢”) is positive (see Figure 5). [

11. Summary and Further Research

We study the three special cases of the relatively new deterministic flow shop sche-
duling problem where different processing states have different WIP costs. Speci-
fically, the first and the second cases are the problem where processing times on
machine 1 are identical and the problem where processing times on machine 2 are
identical, respectively. The recognition version of the both problems is known to be
unary NP-complete.

For each problem, we suggest two simple and intuitive heuristics, GS and NW
and find worst case bounds on relative error. For Heuristic GS, a tight upper bound
on relative error is found for each of the problems. For Heuristic NW, we find an
upper bound on relative error and the bound is asymptotically attainable for each of
the problems.

The third special case is the problem where the processing time of a job on each
machine is proportional to a base processing time. For this problem, we show that a
known heuristic finds an optimal solution.

There are several important possible extension of this research. Design of a PTAS
would be interesting. Also worth considering are more general cases of the problem

such as including individual weights for each job.
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