• 제목/요약/키워드: Scattering process

검색결과 434건 처리시간 0.033초

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제46권1호
    • /
    • pp.49-63
    • /
    • 2013
  • Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

밀리미터파대역(W-대역)공대지 레이다의 이중편파 채널을 활용한 지상 표적 식별 기법에 관한 연구 (The study on target recognition method to process real-time in W-band mmWave small radar)

  • 박성호;공영주;유성현;윤정숙
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.61-69
    • /
    • 2018
  • 본 논문에서는 밀리미터파대역의 공대지 레이다에서 이중 편파 채널을 활용한 지상 표적을 식별하기 위한 방법을 제안한다. 먼저 공대지 레이다의 조우 상황에서 Push-Broom 표적 탐지 방법을 설명하고 수신 신호를 모델링한다. 시간 영역 스펙트럼 추정 기법인 RELAX 알고리즘을 이용하여 산란점을 추출하고 표적의 특성 벡터를 생성하였다. 그리고 이를 기반으로 각각의 4표적에 대한 DB를 구성하였다. 제안하는 방법으로 표적 식별 시뮬레이션을 수행한 결과 이중 편파 채널의 데이터를 이용하면 단일 채널에 비해서 표적 식별률이 최대 15% 이상 높아지는 것을 확인할 수 있었다.

Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods

  • Xu, Weiwei;Niu, Jinzhong;Zheng, Shuang;Tian, Guimin;Wu, Xinghui;Cheng, Yongguang;Hu, Xiaoyang;Liu, Shuaishuai;Hao, Haoshan
    • 대한화학회지
    • /
    • 제61권4호
    • /
    • pp.185-190
    • /
    • 2017
  • One-dimensional CdTe nanorods (NRs) are obtained by the reaction of various Cd precursors with single crystalline Te nanorod templates, which are pre-synthesized from Te precursors by a simple and reproducible solvothermal method. Throughout the process, the diffraction intensity of different crystal facets of single crystalline Te NRs varied with reaction times. Finally, by alloying Cd ions along the axial direction of Te NRs, polycrystalline cubic phase CdTe NRs with diameters of 80-150 nm and length up to $1.2-2.4{\mu}m$ are obtained. The nucleation and growth processes of Te and CdTe NRs are discussed in details, and their properties are characterized by XRD, SEM, TEM, Raman scattering, and UV-vis absorption spectra. It was found that the key elements of synthesizing CdTe NRs such as reaction temperatures and Cd sources will strongly influence the final shape of CdTe NRs.

2-Dimensional inverse opal structured VO2 thin film for selective reflectance adjustment

  • Lee, Yulhee;Yu, Jung-Hoon;Nam, Sang-Hun;Seo, Hyeon Jin;Hwang, Ki-Hwan;Kim, Minha;Lee, Jaehyeong;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.410.1-410.1
    • /
    • 2016
  • Vanadium dioxide ($VO_2$) is a well-known material that exhibits a metal-semiconductor transition at 340 K, with drastic change of transmittance at NIR region. However, $VO_2$ based thermochromics accompany with low visible transmittance value and unfavorable color (brownish yellow). Herein, we demonstrate the adjustment of visible transmittance of $VO_2$ thin film by nanosphere template assisted patterning process using sol-gel method. 2-Dimenstional honeycomb shape was varied as function of diameter of nanosphere and coating conditions. The morphological geometry of the films was investigated by FE-SEM and AFM. Result shows that inversed shape of nanosphere was formed clearly and pattern width was altered according to the bead size. This structure creates the geometrical blank area from the position of nanosphere which improves the optical transmittance at the visible region. Moreover, such patterned $VO_2$ thin film not only maintains the optical switching efficiency, but also generate the gorgeous scattering effect which presumably support the glazing application.

  • PDF

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

Parameterization Model for Damaging Ultraviolet-B Irradiance

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Moon, Yun-Seob
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권1호
    • /
    • pp.41-56
    • /
    • 1999
  • Since UV-B radiation measuring networks have not been established, numerical models which calculate the flux from other readily available meteorological measurements may play an important role. That is, such a problem can be solved by using parameterization models such as two stream approximation, the delta-Eddington method, doubling method, and discrete ordinate method. However, most UV-B radiative transfer models have not been validated with measurements, because such models are not intended as practical computational schemes for providing surface estimates of UV-B radiation. The main concern so far has been to demonstrate model sensitivity for cloudless skies. In particular, few have been concerned with real cloud information. Clouds and aerosols have generally been incorporated as constituents of particular atmospheric layers with specified optical depths and scattering properties. The parameterization model presented here is a combination of a detailed radiative transfer algorithm for a coludless sky radiative process and a more approximate scheme to handle cloud effects. The model input data requires a daily measurement of the total ozone amount plus a daily record of the amount and type of cloud in the atmosphere. Measurements for an examination of the models at the Department of Atmospheric Sciences, Pusan National University have been takenfrom February, 1995. These models can be used to calculate present and future fluxes where measurements have not been taken, and construct climatologies for the period before ozone depletion began.

  • PDF

2차원 시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 입자 크기 측정 (Soot Primary Particle Size Measurement in a Ethylene Diffusion Flame Using Time-Resolved Laser-Induced Incandescence)

  • 손무강;문건필;김규보;이종호;정동수;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1140-1145
    • /
    • 2004
  • Laser-induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles in flame environments. This technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application. The evaluation of the temporal decay of the laser-induced incandescence (LII) signal from soot particles is introduced as a technique to obtain two-dimensional distributions of particle sizes and is applied to a laminar diffusion flame. This novel approach to soot sizing exhibits several theoretical and technical advantages compared with the established combination of elastic scattering and LII, especially as it yields absolute sizes of primary particles without requiring calibration. With this technique a spatially resolved 2-D measurement of soot primary particle sizes is feasible in a combination process form the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size.

  • PDF

에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성 (The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame)

  • 오광철;이은도;신현동;이의주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1172-1177
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the change of soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth region). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

Mie 산란 방법과 엔트로피 해석 방법을 이용한 혼합연료비에 따른 분무 균질도 특성에 관한 연구 (A Study on the Macro-Scopic Spray Characteristic of Homogeneous Degree for the GDI Injector According to Mixture(Gasoline-Diesel) Ratio Using Mie-Scattering Method and the Entropy Analysis)

  • 이창희;이기형;이창식;배재일
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2003
  • In this study, his technique was applied to a GDI spray in order to investigate the mixture distribution. In addition, the homogeneity degree and diffusion effect according to ambient temperature in the high pressure chamber were analyzed by using an entropy analysis method. From this experiment, we could find that entropy analysis is very effective method for the analysis of mixture formation, and the entropy values increase with the progress of uniformity in diffusion Process. we tried to provide the fundamental data for parameter which effects on the spray macroscopic characteristics with mixture ratio of diesel and gasoline. In addition, the mixture formation was analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. From the entropy analysis results we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions. As to increasing ambient temperature and increasing gasoline rate, the entropy intensity using the statistic thermodynamics method is increased because evaporation rate is higher gasoline than diesel.

사용후핵연료 절단연료봉 운반/취급장치 개발 (The Development of transportation and handling device for spent nuclear fuel rod cuts)

  • 홍동희;진재현;정재후;김영환;윤지섭;김성현;고병승
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1715-1718
    • /
    • 2005
  • During demonstrations of a process conditioning spent nuclear fuels, it may be necessary to transport and handle Spent fuel road cuts from Post Irradiation Examination facility to Slitting device in The hot cell. It may be not easy to transport spent fuel rod cuts because rod cuts are high radioactive materials. For this purpose, we have developed a capsule for transporting and handling high radioactive materials. We have analyzed conditions of a hot cell and requirements of the device, designed and manufactured The prototype of the device, and done some performance tests. From the tests, it has been shown that transportation and handling without scattering nuclear material was smooth but the weight of capsule was heavy. These result will be reflected to a design of the improved transportation and handling device which will be used during demonstrations.

  • PDF