Browse > Article
http://dx.doi.org/10.5303/JKAS.2013.46.1.49

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS  

Kang, Hyesung (Department of Earth Sciences, Pusan National University)
Publication Information
Journal of The Korean Astronomical Society / v.46, no.1, 2013 , pp. 49-63 More about this Journal
Abstract
Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.
Keywords
cosmic ray acceleration; supernova remnant; hydrodynamics; methods: numerical;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S., Ellison, D. C., & Nagataki, S. 2012, A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Supernova Remnant, ApJ, 750, 156   DOI
2 Lucek, S. G., & Bell, A. R. 2000, Non-Linear Amplification of a Magnetic Field Driven by Cosmic Ray Streaming, MNRAS, 314, 65   DOI   ScienceOn
3 Malkov, M. A., & Drury, L. O'C. 2001, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429   DOI   ScienceOn
4 Malkov, M. A., Diamond, P. H., & Sagdeev, R. Z. 2011, Mechanism for Spectral Break in Cosmic Ray Proton Spectrum of Supernova Remnant W44, Nature Communications, 2, 194   DOI   ScienceOn
5 Mandelartz, M., & Tjus, J. B. 2013, A Statistical Study of Galactic SNR Source Spectra Detected at >GeV Energies, arXiv:1301.2437
6 Morlino, G., Amato, E., & Blasi, P. 2009, Gamma-Ray Emission from SNR RX J1713.7-3946 and the Origin of Galactic Cosmic Rays, MNRAS, 392, 240   DOI   ScienceOn
7 Morlino G., & Caprioli, D. 2012, Strong Evidence for Hadron Acceleration in Tycho's Supernova Remnant, A&A, 538, 81   DOI
8 Ohira, Y., Reville, B., Kirk, J. G., & Takahara, F. 2009, Two-Dimensional Particle-In-Cell Simulations of the Nonresonant, Cosmic-Ray-Driven Instability in Supernova Remnant Shocks, ApJ, 698, 445   DOI
9 Parizot, E., Marcowith, A., Ballet, J., & Gallant, Y. A. 2006, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Amplified Magnetic Field and Maximum Energy, A&A, 453, 387   DOI   ScienceOn
10 Ptuskin, V. S., & Zirakashvili, V. N. 2005, On the Spectrum of High-Energy Cosmic Rays Produced by Supernova Remnants in the Presence of Strong Cosmic-Ray Streaming Instability and Wave Dissipation, A&A, 429, 755   DOI   ScienceOn
11 Ptuskin, V. S., Zirakashvili, V. N., & Seo, E. 2010, Spectrum of Galactic Cosmic Rays Accelerated in Supernova Remnants, ApJ, 718, 31   DOI
12 Reville, R., & Bell, A. R. 2012, A Filamentation Instability for Streaming Cosmic Rays, MNRAS, 419, 2433   DOI   ScienceOn
13 Reville, R., & Bell, A. R. 2013, Universal Behaviour of Shock Precursors in the Presence of Efficient Cosmic-Ray Acceleration, arXiv:1301.3173
14 Reynolds, S. P. 2008, Supernova Remnants at High Energy, ARA&A, 46, 89   DOI   ScienceOn
15 Reynolds, S. P., Gaensler, B. M., & Bocchino, F. 2012, Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae, Space Sci. Rev., 166, 231   DOI
16 Riquelme, M. A., & Spitkovsky, A. 2009, Nonlinear Study of Bell's Cosmic Ray Current-Driven Instability, ApJ, 694, 626   DOI
17 Riquelme, M. A., & Spitkovsky, A. 2010, Magnetic Amplification by Magnetized Cosmic Rays in Supernova Remnant Shocks, ApJ, 717, 1054   DOI
18 Rogachevskii, I., Kleeorin, N., Brandenburg, A., & Eichler, D. 2012, Cosmic-Ray Current-Driven Turbulence and Mean-Field Dynamo Effect, ApJ, 753, 6   DOI
19 Schlickeiser, R. 1989, Cosmic-Ray Transport and Acceleration. II. Cosmic Rays in Moving Cold Media with Application to Diffusive Shock Wave Acceleration, ApJ, 336, 264   DOI
20 Schlickeiser R. 2002, Cosmic Ray Astrophysics (Berlin: Springer)
21 Schure, K. M., Bell, A. R, Drury, L. O'C., &. Bykov, A. M. 2012, Diffusive Shock Acceleration and Magnetic Field Amplification, Space Sci. Rev., 173, 491   DOI
22 Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557   DOI
23 Vladimirov, A. E., Bykov, A. M., & Ellison, D. C. 2008, Turbulence Dissipation and Particle Injection in Nonlinear Diffusive Shock Acceleration with Magnetic Field Amplification, ApJ, 688, 1084   DOI
24 Volk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, Magnetic Field Amplification in Tycho and Other Shell-Type Supernova Remnants, A&A, 433, 229   DOI   ScienceOn
25 Zirakashvili, V. N., & Ptuskin, V. S. 2008, Diffusive Shock Acceleration with Magnetic Amplification by Nonresonant Streaming Instability in Supernova Remnants, ApJ, 678, 939   DOI
26 Zirakashvili, V. N., & Ptuskin, V. S. 2012, Numerical Simulations of Diffusive Shock Acceleration in SNRs, APh, 39, 12
27 Bamba, A., Yamazaki, R, Ueno, M., & Koyama, K. 2003, Small-Scale Structure of the SN 1006 Shock with Chandra Observations, ApJ, 589, 827   DOI   ScienceOn
28 Abdo, A. A., et al. 2010, Fermi Large Area Telescope Observations of the Supernova RemnantW28 (G6.4- 0.1), ApJ, 718, 348   DOI
29 Acero, F., et al. 2010, First Detection of VHE $\gamma$-Rays from SN 1006 by HESS, A&A, 516, A62   DOI   ScienceOn
30 Acciari, V. A., et al. 2011, Discovery of TeV Gamma-Ray Emission from Tycho's Supernova Remnant, ApJ, 730, L20   DOI
31 Bell, A. R. 1978, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147   DOI
32 Bell, A. R. 2004, Turbulent Amplification of Magnetic Field and Diffusive Shock Acceleration of Cosmic Rays, MNRAS, 353, 550   DOI   ScienceOn
33 Beresnyak, A., Jones, T. W., & Lazarian, A. 2009, Turbulence-Induced Magnetic Fields and Structure of Cosmic Ray Modified Shocks, ApJ, 707, 1541   DOI
34 Berezhko, E. G., & Volk, H. J. 1997, Kinetic Theory of Cosmic Rays and Gamma Rays in Supernova Remnants. I. Uniform Interstellar Medium, Astropart. Phys., 7, 183   DOI   ScienceOn
35 Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2009, Cosmic Ray Acceleration Parameters from Multi-Wavelength Observations. The Case of SN 1006, A&A, 505, 169   DOI   ScienceOn
36 Berezhko, E. G., Ksenofontov, L. T., & Volk, H. J. 2012, Nonthermal Emission of Supernova Remnant SN 1006 Revisited: Theoretical Model and the H.E.S.S. Results, ApJ, 759, 12   DOI
37 Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin, Phys. Rept., 154, 1   DOI   ScienceOn
38 Bykov, A. M., Osipov, S. M., & Ellison, D. C. 2011, Cosmic Ray Current Driven Turbulence in Shocks with Efficient Particle Acceleration: the Oblique, Long-Wavelength Mode Instability, MNRAS, 410, 39   DOI   ScienceOn
39 Caprioli, D. 2012, Cosmic-Ray Acceleration in Supernova Remnants: Non-Linear Theory Revised, JCAP, 7, 38
40 Caprioli, D. 2011, Understanding Hadronic Gamma-Ray Emission from Supernova Remnants, JCAP, 5, 26
41 Caprioli, D., Amato, E., & Blasi, P. 2010, Non-Linear Diffusive Shock Acceleration with Free- Escape Boundary, Astropart. Phys., 33, 307   DOI   ScienceOn
42 Caprioli, D., Blasi, P., Amato, E., & Vietri, M. 2009, Dynamical Feedback of Self-Generated Magnetic Fields in Cosmic Ray Modified Shock, MNRAS, 395, 895   DOI   ScienceOn
43 Caprioli, D., & Spitkovsky, A. 2012, Cosmic-Ray-Induced Filamentation Instability in Collisionless Shocks, arXiv:1211.6765
44 Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973   DOI   ScienceOn
45 Drury, L. O'C., & Downes, T. P. 2012, Turbulent Magnetic Field Amplification Driven by Cosmic Ray Pressure Gradients, MNRAS, 427, 2308   DOI   ScienceOn
46 Drury, L. O'C. 2011, Escaping the Accelerator: How, When and in What Numbers Do Cosmic Rays Get out of Supernova Remnants?, MNRAS, 415, 1807   DOI   ScienceOn
47 Edmon, P. P., Kang, H., Jones, T. W., & Ma, R. 2011, Non-Thermal Radiation from Type Ia Supernova Remnants, MNRAS, 414, 3521   DOI   ScienceOn
48 Eriksen, K. A., Hughes, J. P., Badenes, C., et al. 2011, Evidence for Particle Acceleration to the Knee of the Cosmic Ray Spectrum in Tycho's Supernova Remnant, ApJ, 728, L28   DOI
49 Gargate, L., Fonseca, R. A., Niemiec, J., Pohl, M., Bingham, R., & Silva, L. O. 2010, The Nonlinear Saturation of the Non-resonant Kinetically Driven Streaming Instability, ApJ, 711, L127   DOI
50 Gargate, L., & Spitkovsky, A. 2012, Ion Acceleration in Non-Relativistic Astrophysical Shocks, ApJ, 744, 67   DOI
51 Giacalone, J., & Jokipii, J. R. 2007, Magnetic Field Amplification by Shocks in Turbulent Fluids, ApJ, 663, L41   DOI
52 Giordano, F., et al. 2012, Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho, ApJ, 744, L2   DOI
53 Guo, F., Jokipii, J. R., & Kota, J. 2010, Particle Acceleration by Collisionless Shocks Containing Large- Scale, Magnetic-Field Variations, ApJ, 725, 128   DOI
54 Hillas, A. M. 2005, Can Diffusive Shock Acceleration in Supernova Remnants Account for High Energy Galactic, Cosmic Rays?, Journal of Physics G, 31, R95   DOI   ScienceOn
55 Jones, T. W. 1993, Alfven Wave Transport Effects in the Time Evolution of Parallel Cosmic-Ray-Modified Shocks, ApJ, 413, 619   DOI
56 Kang, H. 2006, Cosmic Ray Acceleration at Blast Waves from Type Ia Supernovae, JKAS, 39, 95
57 Kang, H. 2010, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25
58 Kang, H. 2012, Diffusive Shock Acceleration with Magnetic Field Amplification and Alfvenic Drift JKAS, 45, 127
59 Kang, H., Edmon, P. P., & Jones, T. W. 2012, Non-Thermal Radiation from Cosmic-Ray Modified Shocks, ApJ, 745, 146   DOI
60 Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246   DOI   ScienceOn
61 Kang, H., Jones, T. W., & Gieseler, U. D. J. 2002, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337   DOI   ScienceOn