• Title/Summary/Keyword: Sapphire wafer

Search Result 69, Processing Time 0.045 seconds

Development of Internal Laser Scribing System for Cutting of Sapphire Wafer in LED Chip Fabrication Processes (LED 칩 제조용 사파이어 웨이퍼 절단을 위한 내부 레이저 스크라이빙 시스템 개발)

  • Kim, Jong-Su;Ryu, Byung-So;Kim, Ki-Beom;Song, Ki-Hyeok;Kim, Byung-Chan;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.104-110
    • /
    • 2015
  • LED has added value as a lighting source in the illuminating industry because of its high efficiency and low power consumption. In LED production processes, the chip cutting process, which mainly uses a scribing process with a laser has an effect on quality and productivity of LED. This scribing process causes problems like heat deformation, decreasing strength. The inner laser method, which makes a void in wafer and induces self-cracking, can overcome these problems. In this paper, cutting sapphire wafer for fabricating LED chip using the inner laser scribing process is proposed and evaluated. The aim is to settle basic experiment conditions, determine parameters of cutting, and analyze the characteristics of cutting by means of experimentation.

A Study on the ELID Grinding Properties of Single Crystal Sapphire Wafer using Ultrasonic Table (초음파 테이블을 이용한 단결정 사파이어 웨이퍼의 ELID 연삭가공 특성 연구)

  • Hwang, JinHa;Kwak, Tae-Soo;Lee, Deug-Woo;Jung, Myung-Won;Lee, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • Single crystal sapphire being used in high technology industry is a brittle material with a high hardness and excellent physical properties. ELID(Electrolytic In-Process Dressing) grinding technology was applied to material removal machining process of single crystal sapphire wafer. Ultrasonic vibration which added to material using ultrasonic table was adopted to efficient ELID grinding of sapphire materials. The evaluation of the ground surface of single crystal sapphire wafer was carried out by means of surface measuring by using AFM(Atomic Force Microscope), surface roughness tester and optical microscope device. As the results of experiment, it was shown that more efficient grinding was conducted when using ultrasonic table. In case of using #170 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was superior to ELID ground specimen without ultrasonic table. However, In case of using #2000 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was inferior to ELID ground specimen without ultrasonic table.

A Study of Material Removal Characteristics by Friction Monitoring System of Sapphire Wafer in Single Side DMP (사파이어 웨이퍼 DMP에서 마찰력 모니터링을 통한 재료 제거 특성에 관한 연구)

  • Jo, Wonseok;Lee, Sangjik;Kim, Hyoungjae;Lee, Taekyung;Lee, Seongbeom
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Sapphire has a high hardness and strength and chemical stability as a superior material. It is used mainly as a material for a semiconductor as well as LED. Recently, the cover glass industry used by a sapphire is getting a lot of attention. The sapphire substrate is manufactured through ingot sawing, lapping, diamond mechanical polishing (DMP) and chemical mechanical polishing (CMP) process. DMP is an important process to ensure the surface quality of several nm for CMP process as well as to determine the final form accuracy of the substrate. In DMP process, the material removal is achieved by using the mechanical energy of the relative motion to each other in the state that the diamond slurry is disposed between the sapphire substrate and the polishing platen. The polishing platen is one of the most important factors that determine the material removal characteristics in DMP. Especially, it is known that the geometric characteristics of the polishing platen affects the material removal amount and its distribution. This paper investigated the material removal characteristics and the effects of the polishing platen groove in sapphire DMP. The experiments were preliminarily carried out to evaluate the sapphire material removal characteristics according to process parameters such as pressure, relative velocity and so on. In the experiment, the monitoring apparatus was applied to analyze process phenomena in accordance with the processing conditions. From the experimental results, the correlation was analyzed among process parameters, polishing phenomena and the material removal characteristics. The material removal equation based on phenomenological factors could be derived. And the experiment was followed to investigate the effects of platen groove on material removal characteristics.

X-ray diffraction analysis on sapphire wafers with surface treatments in chemical-mechanical polishing process (사파이어 웨이퍼 연마공정에서의 표면처리효과에 대한 X-선 회절분석)

  • 김근주;고재천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.218-223
    • /
    • 2001
  • The chemical-mechanical polishing process was carried out for 2"-dia. sapphire wafer grown by horizontalBridgman method on the urethane lapping pad with the silica sol. The polished wafer shows the full-width at halfmaximum of 200~400 arcsec in double-crystal X-ray diffraction, indicating that the slicing, grinding and lapping processes before the polishing process affected the crystalline structural property of the wafer surface by the mechanical residual stress. For the inclusion of surface treatments after chemical-mechanical polishing such as the thermal annealing at the temperature of $1,200^{\circ}C$for 4 hrs. and chemical etching, the crystalline quality was sigdicantly enhanced with the reduced full-width at half maximum up to 8.3 arcsec.arcsec.

  • PDF

Study on the Lapping Characteristics of Sapphire Wafer by using a Fixed Abrasive Plate (고정 입자 정반을 이용한 사파이어 기판의 연마 특성 연구)

  • Lee, Taekyung;Lee, Sangjik;Jo, Wonseok;Jeong, Haedo;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • Diamond mechanical polishing (DMP) is a crucial process in a sapphire wafering process to improve flatness and achieve the target thickness by using free abrasives. In a DMP process, material removal rate (MRR) is a key factor to reduce process time and cost. Controlling mechanical parameters, such as velocity and pressure, can increase the MRR in a DMP process. However, there are limitations of using high velocities and pressures for achieving a high MRR owing to their side effects. In this paper, we present the lapping characteristics and improvement of MRR by using a fixed abrasive plate through an experimental study. The change in MRR as a function of velocity and pressure follows Preston's equation. The surface roughness of a wafer decreases as the plate velocity and pressure increases. We observe a sharp decrease in MRR over the lapping time at a high velocity and pressure in the velocity and pressure test. An analysis of surface roughness (Rq and Rpk) indicates that wear of abrasives decreases the MRR sharply. In order to investigate the effect of abrasive wear on the MRR, we utilize a cutting fluid and a rough wafer. The cutting fluid delays the wear of abrasives resulting in improvement of MRR drop. The rough wafer maintains the MRR at a stable rate by self-dressing.

Effects of Groove Shape Dimension on Lapping Characteristics of Sapphire Wafer (정반 그루브의 형상치수가 사파이어 기판의 연마특성에 미치는 영향)

  • Lee, Taekyung;Lee, Sangjik;Jeong, Haedo;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.119-124
    • /
    • 2016
  • In the sapphire wafering process, lapping is a crucial operation in order to reduce the damaged layer and achieve the target thickness. Many parameters, such as pressure, velocity, abrasive, slurry and plate, affect lapping characteristics. This paper presents an experimental investigation on the effect of the plate groove on the material removal rate and roughness of the wafer. We select the spiral pattern and rectangular type as the groove shapes. We vary the groove density by controlling the groove shape dimension, i.e., the groove width and pitch. As the groove density increases to 0.4, the material removal rate increases and gradually reaches a saturation point. When the groove density is low, the pressing load is mostly supported by the thick film, and only a small amount acts on the abrasives resulting to a low material removal rate. The roughness decreases on increasing the groove density up to 0.3 because thick film makes partial participations of large abrasives which make deep scratches. From these results, we could conclude that the groove affects the contact condition between the wafer and plate. At the same groove density, the pitch has more influence on reducing the film thickness than the groove width. By decreasing the groove density with a smaller pitch and larger groove width, we could achieve a high material removal rate and low roughness. These results would be helpful in understanding the groove effects and determining the appropriate groove design.