• 제목/요약/키워드: Salinization

검색결과 27건 처리시간 0.022초

수경재배 시 염소흡착을 위한 활성탄 처리가 실내식물인 개운죽(Dracaena braunii)의 생육 및 생리에 미치는 영향 (Effects of Activated Carbon on Growth and Physical Responses of Indoor Plant Dracaena braunii to Alleviate Salt-induced Stress in Water Culture)

  • 주진희;손혜미;김원태;윤용한
    • 한국환경과학회지
    • /
    • 제28권3호
    • /
    • pp.321-328
    • /
    • 2019
  • This study aimed to analyze the growth and physical responsees of Dracaena braunii in response salt accumulation in ornamental water culture and to examine the effect of activated carbon on this growth response. The experiment was conducted in a plant growth chamber and the indoor environmental conditions of the chamber were set at $23{\pm}1^{\circ}C$ temperature, $70{\pm}3%$ humidity, and 1,000 lux brightness. The observation of the growth response of plants in the presence of activated carbon showed that the pH with activated carbon maintained sub-acidic to neutral (6.27~7.32) conditions and showed decreased electric conductivity in the media. As the treatment with added activated carbon showed good growth and physical responses, this indicated that absorption effect of activated carbon had a positive influence on the growth of plants. However, as the absorption effect of activated carbon may decrease over time and the use of high concentrations of activated carbon might cause nutrition shortage, various concentration of activated carbon and their absorption effects need to be investigated in the future.

낙동강하구 새섬매자기(Bolboschoenus planiculmis) 복원 모니터링: 식물체(shoot) 식재를 이용한 습지복원 (Monitoring on Bolboschoenus planiculmis Restoration in Nakdong River Estuary: Implications for Wetland Restoration Using Shoot Transplantation)

  • 김구연;박희순;김화영;이지영
    • 생태와환경
    • /
    • 제55권4호
    • /
    • pp.406-414
    • /
    • 2022
  • Bolboschoenus planiculmis has been acknowledged as a key species in whooper swans (Cygnus cygnus) habitat by providing food for this migratory waterfowl. B. planiculmis wetlands are being degraded by water shortages and salinization caused by anthropogenic activities and climate changes. In 2004, the distribution of B. planiculmis in the tidal flats of the Nakdong Estuary was 2,475,568 m2, and in 2021, the distribution area was 798,731 m2, which decreased by 32.3%. In order to restore the degraded B. planiculmis wetlands, shoot transplantation and seed sowing were tentatively used in three places with different salinity and water levels. The average density per unit area in September at the optimal growth period after planting were A (fresh water level 50 cm) 58±15.65 m-2, B (brackish water level 0~5 cm) 188±63.83 m-2, C (brackish water level 0 cm or less) 188±45.13 m-2. The tubers were observed as A 0 g dw m-2, B 25.32±2.94 g dw m-2, and C 13.39±0.91 g dw m-2. Tubers were distributed in the soil, with only 3.0% at the 10~20 cm depth but 97.0% at the 0~10 cm depth. In contrast, the germination rate of B. planiculmis seeds was observed to be 0%. Results of this study provide technical support for the restoration of B. planiculmis wetland and the improvement in the quality of whooper swans habitat.

Opportunities for Agricultural Water Management Interventions in the Krishna Western Delta - A case from Andhra Pradesh, India

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • 제9권1호
    • /
    • pp.7-17
    • /
    • 2017
  • Agricultural water management has gained enormous attention in the developing world to alleviate poverty, reduce hunger and conserve ecosystems in small-scale production systems of resource-poor farmers. The story of food security in the $21^{st}$ century in India is likely t o be closely linked to the story of water security. Today, the water resource is under severe threat. The past experiences in India in general and in Andhra Pradesh in particular, indicated inappropriate management of irrigation has led to severe problems like excessive water depletion, reduction in water quality, water logging, salinization, marked reduction in the annual discharge of some of the rivers, lowering of ground water tables due to pumping at unsustainable rates, intrusion of salt water in some coastal areas etc. Considering the importance of irrigation water resource efficiency, Krishna Western Delta (KWD) of Andhra Pradesh was purposively selected for this in depth study, as the farming community in this area are severely affected due to severe soil salinity and water logging problems and hence, adoption of different water saving crop production technologies deserve special mention. It is quite disappointing that, canals, tube wells and filter points and other wells could not contribute much to the irrigated area in KWD. Due to less contribution from these sources, the net area irrigated also showed declining growth at a rate of -6.15 per cent. Regarding paddy production, both SRI and semi-dry cultivation technologies involves less irrigation cost (Rs. 2475.21/ha and Rs. 3248.15/ha respectively) when compared to transplanted technology (Rs. 4321.58/ha). The share of irrigation cost in Total Operational Cost (TOC) was highest for transplanted technology of paddy (11.06%) followed by semi-dry technology (10.85%) and SRI technology (6.21%). The increased yield and declined cost of cultivation of paddy in SRI and semi-dry production technologies respectively were mainly responsible for the low cost of production of paddy in SRI (Rs. 495.22/qtl) and semi-dry (Rs. 532.81/qtl) technologies over transplanted technology (Rs. 574.93/qtl). This clearly indicates that, by less water usage, paddy returns can be boosted by adopting SRI and semi-dry production technologies. Both the system-level and field-level interventions should be addressed to solve the issues/problems of water management. The enabling environment, institutional roles and functions and management instruments are posing favourable picture for executing the water management interventions in the State of Andhra Pradesh in general and in KWD in particular. This facilitates the farming community to harvest good crop per unit of water resource used in the production programme. To achieve better results, the Farmers' Organizations, Water Users Associations, Department of Irrigation etc., will have to aim at improving productivity per unit of water drop used and this must be supported through system-wide enhancement of water delivery systems and decision support tools to assist farmers in optimizing the allocation of limited water among crops, selection of crops based on farming situations, and adoption of appropriate alternative crops in drought years.

벤트그래스 그린 관리를 위한 엽면 시비의 효과 (The Effect of Foliar Application to Improve Putting Green Performance)

  • 홍범석;태현숙;오상훈;조용섭
    • 아시안잔디학회지
    • /
    • 제25권1호
    • /
    • pp.94-99
    • /
    • 2011
  • 본 연구는 잔디 관리에서 엽면시비를 통해 나타나는 잔디의 생육 및 품질을 조사하여, 잔디 관리 정보를 제공하고자 수행되었다. 연구 결과, 엽면시비 후 잔디의 시각적 품질 및 밀도, 클로로필 함량이 높아졌다. 잔디밀도는 대조구에 비해 평균 2.8개/$cm^2$ 높았으며, 여름철 장마기에는 평균 3개/$cm^2$ 이상 높았다. 또한, 벤트그래스 그린에서 시각적 품질 및 클로로필 함량, 식생지수가 1년 내내 균일하게 유지되었으며, 갱신작업이나 건조피해 후에도 관주시비 처리구의 잔디보다 엽면시비 처리구의 잔디 회복속도가 현저히 빠른 것을 확인할 수 있었다. 본 결과를 통해 엽면시비가 잔디의 지상부에 영양분을 신속하게 제공하여 잔디 생육을 단기간에 높이는 효과가 있다는 점을 알 수 있었으며, 이는 잦은 잔디 깎기로 양분의 유실이 많은 그린에서 유용하며, 특히 뿌리 길이가 짧아 시비의 효과가 낮은 하절기의 그린관리에 매우 실용적인 관리프로그램이 될 것으로 예상된다. 하지만, 본 연구에서 잔디의 뿌리 길이 생육에 관해서는 관주 시비구와 엽면 시비구의 차이를 확인하기 어려웠으며, 엽변 시비프로그램의 특성상 시비 횟수가 늘어나는 점에 대해서도 생각해 보아야 한다. 마지막으로, 토양 분석결과에서 시비 전후 토양의 화학성에 큰 변화가 없다는 점은 토양 염류의 축적이 예방된다는 측면에서 큰 장점이 될 수 있으나 양분의 결핍이 쉽게 올 수 있다는 점에서 위험 요인이 될 수도 있다. 본 연구를 통해, 국내에서도 엽면 시비를 보편적인 시비방법으로 정착시킬 필요성을 느끼며, 이를 위해서는 시비 횟수를 줄이는 것과 같은 실용성을 높이기 위한 추가 연구가 필요할 것이다.

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

미생물혼합제제 처리가 토양의 미생물상과 화학적 특성 및 시설 채소 생육에 미치는 영향 (Effect of Microorganism Mixture Application on the Microflora and the Chemical Properties of Soil and the Growth of Vegetables in Greenhouse)

  • 류일환;정수지;한성수
    • 한국환경농학회지
    • /
    • 제31권4호
    • /
    • pp.368-374
    • /
    • 2012
  • BACKGROUND: The urgency of feeding the world's growing population while combating soil pollution, salinization and desertification requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of soil nutrient and soil microorganism. Interest in the utilization of microbial fertilizer has increased. A principle of nature farming is to produce abundant and healthy crops without using chemical fertilizer and pesticides, and without interrupting the natural ecosystem. Beneficial microorganisms may provide supplemental nutrients in the soil, promote crop growth, and enhance plant resistance against pathogenic microorganisms. We mixed beneficial microorganisms such as Bacillus sp. Han-5 with anti-fungal activities, Trichoderma harziaum, Trichoderma longibrachiatum with organic material degrading activity, Actinomycetes bovis with antibiotic production and Pseudomonas sp. with nitrogen fixation. This study was carried out to investigate the mixtures on the soil microflora and soil chemical properties and the effect on the growth of lettuce and cucumber under greenhouse conditions. METHODS AND RESULTS: The microbial mixtures were used with each of organic fertilizer, swine manure and organic+swine manure and compared in regard to changes in soil chemical properties, soil microflora properties and crop growth. At 50 days after the treatment of microorganism mixtures, the pH improved from 5.8 to 6.3, and the EC, $NO_3$-Na and K decreased by 52.4%, 60.5% and 29.3%, respectively. The available $P_2O_5$ and $SiO_2$ increased by 25.9% and 21.2%, respectively. Otherwise, the population density of fluorescent Pseudomonas sp. was accelerated and the growth of vegetables increased. Moreover, the population density of E. coli and Fusarium sp., decreased remarkably. The ratio of bacteria to fungi (B/F) and the ratio of Actinomycetes bovis to fungi (A/F) increased 2.3 (from 272.2 to 624.4) and 1.7 times (from 38.3 to 64), respectively. Furthermore, the growth and yield of cucumber and lettuce significantly increased by the treatment of microorganism mixtures. CONCLUSION(S): These results suggest that the treatment of microorganism mixtures improved the chemical properties and the microflora of soil and the crop growth. Therefore, it is concluded that the microorganism mixtures could be good alternative soil amendments to restore soil nutrients and soil microflora.

서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상 (Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea)

  • 문상호;윤윤열;이진용
    • 자원환경지질
    • /
    • 제55권6호
    • /
    • pp.671-687
    • /
    • 2022
  • 우리나라 서·남해 연안 지대는 해안으로부터 10 km 범위 내 관정의 약 47%가 해수의 영향을 받은 것으로 보고되었고, 지하수의 염분화 원인이 해수 침투 때문일 것이라 해석되어 왔다. 서천지역의 길산천은 금강하구둑이 건설·운영되어 매립 농지로 이용되기 전까지는 감조하천으로서 유역 내에는 해수에 의한 퇴적물이 생성되고 그 내부에는 염분 공극수가 존재했을 것으로 추정된다. 길산천 소유역 내 지하수는 EC 값이 111~21,000 µS/cm 범위로서 매우 높은 염분 지하수가 존재하며, 수질 유형은 Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl 등 다양하게 나타나고 있다. 이러한 수질의 다양성은 강수 및 지표수로부터 유입 생성되는 담수 지하수 수질과 해수 수질의 혼합 현상 때문에 기인되는 것으로 판단된다. 금번 연구에서는 이러한 수질 다양성 및 염분 지하수의 존재가 현재 진행 중인 해수 침투 때문인지 아니면 조간대 퇴적물 내 고(古)염분 공극수가 씻겨나가는 과정에서 잔존하기 때문인지를 논의하였다. 이를 위해, 연구지역 내 강수, 지표수, 해수, 지하수에 대하여 수질 특성을 비교하고, 삼중수소 함량, 산소/수소 안정동위원소 조성, 87Sr/86Sr 비 등을 비교·검토하였다. 산소/수소 안정동위원소 조성으로 볼 때, EC 값이 큰 염분 지하수들의 물 성분은 담수 지하수와 지표수 물이 혼합된 물로 구성되어 있으며, 삼중수소 함량에 의해 추정되는 연령이 젊은 지하수들은 NO3 함량이 높은 지표 영향을 많이 받은 것들로 나타나, 연구지역의 지하수 수질 진화 과정에는 담수 지하수 및 지표수가 지속적으로 영향을 미치고 있는 것으로 나타났다. 또한, 담수 지하수/지표수와 해수를 2개의 단성분으로 가정하고 Cl 함량 변화에 따른 Na/Cl ratio와 나트륨흡착도(SAR)의 변화 패턴을 고려하면, 연구지역 지하수들은 해수 침투가 아니라 고염분 지하수의 씻김 현상을 겪고 있는 것으로 해석되었다.