Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.6.671

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea  

Sang-Ho Moon (Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Yoon Yeol Yoon (Department of Geology, Kangwon National University)
Jin-Yong Lee (Department of Geology, Kangwon National University)
Publication Information
Economic and Environmental Geology / v.55, no.6, 2022 , pp. 671-687 More about this Journal
Abstract
It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.
Keywords
Seocheon area; Gilsan stream catchment; water quality diversity; fossil saline groundwater; flushing out;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Aberg, G., Jacks, G., Wickman, T. and Hamilton, D.J. (1990) Strontium isotopes in trees as an indicator for calcium availability, Catena, v.17, Issue 1, p.1-11. https://doi.org/10.1016/0341-8162(90)90011-2.   DOI
2 Akouvi, A., Dray, M., Violette, S., de Marsily, G. and Zuppi, G.M. (2008) The sedimentary coastal basin of Togo: example of a multilayered aquifer still influenced by a palaeo-seawater intrusion. Hydrogeology Journal, v.16, p.419-436. doi: 10.1007/s10040-007-0246-1.   DOI
3 Badaruddin, S., Werner, A. and Morgan, L.K. (2015) Water table salinization due to seawater intrusion. Water Resrouces Research, v.51, issue10, p.8397-8408. doi: 10.1002/2015WR017098   DOI
4 Badeenezhad, A., Tabatabaee, H.R., Nikbakht, H.-A., Radfard, M., Abbasnia, A., Baghapour, M.A. and Alhamd, M. (2020) Estimation of the groundwater quality index and investigation of the affecting factors their changes in Shiraz drinking groundwater, Iran. Groundwater for Sustainable Development, v.11, 100435. https://doi.org/10.1016/j.gsd.2020.100435   DOI
5 Barker, A.P., Newton, R.J., Bottrell, S.H. and Tellam, J.H. (1998) Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Applied Geochemisty, v.13, Issue6, p.735-749. https://doi. org/10.1016/S0883-2927(98)00006-7.   DOI
6 Boufekane, A., Maizi, D., Madene, E., Busico, G. and Zghibi, A. (2022) Hydridization of GALDIT method to assess actural and future coastal vulnerability to seawater incrusion. Journal of Environmental management, v.318, 115580. https://doi.org/10.1016/j.jenvman.2022.115580.   DOI
7 Calvache, M.I. and Pulido-Bosch, A. (1997) Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in southern Spain. Environ. Geol., v.30, p.215-223. https://doi.org/10.1007/ s002540050149.   DOI
8 Cao, T., Han, D. and Song, X. (2021) Past, present, and future of global seawater intrusion research: A bibliometric analysis. Journal of Hydrology, v.603, 126844. https://doi.org/10.1016/j.jhydrol.2021.126844.   DOI
9 Chi, S.J., Chang, H.W., Kim, N.H., Kim, T.G. and Yun, W. (2003) Water quality and stable isotope study for the brachish groundwater at Yeongkwang coastal area. Proceedings of Spring Academic Meeting of Korea Soc. Econ. Environ. Geol., Chonnam Nat'l Univ., Yongbong Culture Center, Abstract Book, p.103-107.
10 Clark, I.D. and Fritz, P. (1997) Environmental isotopes in hydrogeology, Lewis Publishers, New York, 328p.
11 Craig, H. (1961) Isotopic variations in meteoric waters. Science, v.133, Issue 3465, p.1702-1703. DOI:10.1126/science.133.3465.1702   DOI
12 Devic, G., Djordjevic, D. and Sakan, S. (2014) Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of the Total Environment, v.468-469, p.933-942. doi:10.1016/j.scitotenv.2013.09.011   DOI
13 Epstein, S. and Mayeda, T.K. (1953) Variations of the 18O content of waters from natural sources. Geochim. et Cosmochim. Acta, v.4, p.213-224. https://doi.org/10.1016/0016-7037(53)90051-9.   DOI
14 Faure G. and Powell J.L. (1972) Strontium Isotope Geology. Springer-Verlag Berlin, Heidelberg, New York, 188p.
15 Freeman, J.T. (2007) The use of bromide and chloride mass ratio to differentiate salt-dissolution and formation brines in shallow groundwater of the Western Canadian Sedimentary Basin. Hydrogeol. J., v.15, p.1377-1385. DOI 10.1007/s10040-007-0201-1   DOI
16 Kim, K., Rajmohan, N., Kim, H.J., Hwang, G.-S. and Cho, M.J. (2004) Assessment of groundwater chemistry in a coastal region (Kunsan, Korea) having complex contaminant sources: a stoichiometric approach. Environ. Geol., v.46, p. 763-774. DOI 10.1007/s00254-004-1109-x.   DOI
17 Gosselin, D.C., Harvey, F.E., Frost, C., Stotler, R. and Macfarlane, P.A. (2004) Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA. Appl. Geochem., v.19, Issue 3, p.359-377. doi:10.1016/S0883-2927(03)00132-X.   DOI
18 Kang, M. and Jackson, R.B. (2016) Salinity of deep groundwater in California: Water quantity, quality, and protection. Proceedings of the National Academy of Sciencse, v.113, n.28, pp.7768-7773. doi: 10.1073/pnas.1600400113   DOI
19 Kim, S.Y. and Koretsky, C. (2013) Effects of road salt deicers on sediment biogeochemistry. Biogeochemistry, v.112, p.343-358. doi: 10.1007/s10533-012-9728-x   DOI
20 Lee, B.J. and Hwang, S.H. (2008) Evaluation of characteristics of seawater intrusion based on the groundwater fluctuations: Baeksu area, Yeonggwang -gun, J. Geol. Soc. Korea, v.44, No.2, p.233-240.
21 Lee, B.J. and Moon, S.H. (2008) Integrated approach for evaluating the characteristics of seawater intrusion using factor analysis and time series analysis: Seocheon-Gunsan area. J. Geol. Soc. Korea, v.44, No.2, p.219-232.
22 Martinelli, L.A., Victoria, R.L., Stemberg, L.S.L., Ribeiro, A. and Moreira, M.Z. (1996) Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. J. Hydrol., v.183, p.191-204. https://doi.org /10.1016/0022-1694(95)02974-5.   DOI
23 Martinez, D. and Bocanegra, E. (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol. J., v.10, p.393-408. https://doi.org/10.1007/s10040-002-0195-7.   DOI
24 Moon, S.H., Cho S.H., Lee K.S. and Yun U. (2007) The variation of oxygen and hydrogen isotopic composition in precipitation and geothermal waters from the Yuseong Catchment. Econ. Environ. Geol., v.40, No.4, p.389-401.
25 Mason, B. and Moore, C.B. (1982) Principles of geochemistry. 4th edition. John Wiley & Sons, 344p.
26 Mercado, A. (1985) The use of hydrogeochemical patterns in carbonate sand and sandstone aquifers to identify intrusion and flushing of saline water. Ground Water, v.23, No.5, p.635-645.https://doi.org/10.1111/j.1745-6584.1985.tb01512.x.   DOI
27 MOCT(Ministry of Counstruction and Transportation), KOWACO (Korea Water Resources Development Corporation) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2003) Basic Groundwater Survey Report for Seocheon- Gunsan Area, 237p.
28 Moon, S.H., Lee B.J., Park K.G. and Ko K.S. (2009) Hydrogeochemical characteristics and occurrences of high-saline ground water at Seocheon area, Korea. Econ. Environ. Geol., v.42, No.3, p.235-246.
29 Morrison, J., Brockwell, T., Merren, T., Fourel, F. and Phillips, A.M. (2001) On-line high precision stable hydrogen isotopic analyses on nanoliter water samples. Analytical Chem., v.73, p.3579-3575. https://doi.org/10.1021/ac001447t.   DOI
30 MOST(Ministry of Science and Technology) and KIGAM(Korea Institute of Geoscience and Mineral Resources) (2003) Development of the techniques for assessment, prediction and prevention of seawater intrusion. Report No. 00-J-ND-01-B-14, 233p.
31 MOST(Ministry of Science and Technology) and KIGAM(Korea Institute of Geoscience and Mineral Resources) (2006) Mitigation of seawater intrusion problems. Report No. OAA2004031-2006(3), 227p.
32 Pool, M. and Carrera, J. (2010) Dynamics of negative hydraulic barriers to prevent seawater intrusion. Hydrogeology Journal, v.18, p.95-105. doi: 10.1007/s10040-009-0516-1   DOI
33 Ozler, M.H. (2003) Hydrochemistry and salt-water intrusion in the Van aquifers, east Turkey. Environ. Geol., v.43, p.759-775. https://doi.org/10.1007/ s00254-002-0690-0   DOI
34 Park, S.C., Yun, S.T., Chae, G.T. and Lee, S.K. (2002) Hydrogeochemistry of shallow groundwaters in western coastal area of Korea: a study on seawater mixing in coastal aquifers. Soil and Groundwater Environ., v.7, p.63-77.
35 Petalas, C.P. and Diamantis, I.B. (1999) Origin and distribution of saline groundwters in the upper Miocene aquifer system, coastal Rhodope area, northern Greece. Hydrogeol. J., v.7, p.305-316. https://doi.org/10.1007/ s100400050204   DOI
36 Redwan, M., Abdel Moneim, A.A., Mohammed, N.E. and Masoud, A.M. (2020) Sources and health risk assessments of nitrate in groundwater, West of Tahta area, Sohag, Egypt. Episodes, v.43, n.2, p.751-760. doi: 10.18814/epiiugs/2020/020048   DOI
37 Smith, M.E., Wynn, J.G., Scharping, R.J., Moore, E.W., Garey, J.R. and Onac, B.P. (2021) Source of saline groundwater on tidally influenced blue holes on San Salvador Island, Bahamas. Hydrogeology Journal, v.29, p.429-441. doi: 10.1007/s10040-020-02266-z   DOI
38 Yoon, Y.Y., Cho, S.Y., Lee, K.Y. and Kim, Y. (2007) Low level tritium analysis using liquid scintillation counter. Analytical Sci. & Tech., v.20, No.5, p.419-423.
39 Yoon, Y.Y., Kim K.J., Lee, K.Y. and Ko K.S. (2010) Tritium concentration in rain with seasonal variation. Analytical Sci. & Tech., v.23, No.2, p.161-164. https://doi.org/10.5806/AST.2010.23.2.161.   DOI