DOI QR코드

DOI QR Code

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Foresty and Fisheries) ;
  • Siddikee, Md. Ashaduzzaman (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Joe, Manoharan Melvin (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Benson, Abitha (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Kim, Kiyoon (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Selvakumar, Gopal (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Kang, Yeongyeong (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Jeon, Seonyoung (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Samaddar, Sandipan (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Chatterjee, Poulami (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Walitang, Denver (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Chanratana, Mak (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Sa, Tongmin (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2016.04.27
  • Accepted : 2016.08.26
  • Published : 2016.08.31

Abstract

Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

Keywords

References

  1. Ahmad, F., I. Ahmad, and M.S. Khan. 2008. Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res.163:173-181. https://doi.org/10.1016/j.micres.2006.04.001
  2. Ahmad, S., N. Khan, M.Z. Iqbal, A. Hussain, and M. Hassan. 2002. Salt tolerance of cotton (Gossypium hirsutum L.). Asian J. Plant Sci. 1(6):715-719 https://doi.org/10.3923/ajps.2002.715.719
  3. Akhtar, S.S., M.N. Andersen, M. Naveed, Z.A. Zahir, and F. Liu. 2015. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct. Plant Biol. 42(8):770-781. https://doi.org/10.1071/FP15054
  4. Ali, S., T.C. Charles, and B.R. Glick. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80:160-167. https://doi.org/10.1016/j.plaphy.2014.04.003
  5. Asada, K. 1992. Ascorbate peroxidase - a hydrogen peroxidescavenging enzyme in plants. Physiol. Plant. 85(2):235-241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  6. Ashraf, M.1994. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13:17-42. https://doi.org/10.1080/713608051
  7. Ayers, R.S. and D.W. Westcot. 1994. Water Quality for Agriculture, Irrigation and Drainage Paper 29, rev. 1, 6 th ed., Food and Agriculture Organization of the United Nations, Rome
  8. Azarmi, F., V. Mozafari, P.D. Abbaszadeh, and M. Hamidpour. 2015. Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiol. Plant. 38(1):1-21.
  9. Bal, H.B., L. Nayak, S. Das, and T.K Adhya. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 366(1-2):93-105. https://doi.org/10.1007/s11104-012-1402-5
  10. Barka, E.A., J. Nowak, and C. Clement. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans Strain PsJN. Appl. Environ. Microbiol. 72:7246-7252. https://doi.org/10.1128/AEM.01047-06
  11. Bastida, F., A. Zsolnay, T. Hernandez, and C. Garcia. 2008. Past, present and future of soil quality indices: a biological perspective. Geoderma. 147:159-171. https://doi.org/10.1016/j.geoderma.2008.08.007
  12. Belimov, A.A., V.I. Safronova, T.A. Sergeyeva, T.N. Egorova, V.A. Matveyeva, V.E. Tsyganov, A.Y. Borisov, I.A. Tikhonovich, C. Kluge, A. Preisfeld, K.J. Dietz, and V.V. Stepanok. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane- 1-carboxylate deaminase. Can. J. Microbiol. 47:642-652. https://doi.org/10.1139/w01-062
  13. Bharti, N., D. Barnawal, A. Awasthi, A. Yadav, and A. Kalra. 2013. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol. Plant. 36(1):45-60. https://doi.org/10.1007/s11738-013-1385-8
  14. Bharti, N., D. Barnawal, D. Maji, and A. Kalra. 2015. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress. Microb. Ecol. 70(1):196-208. https://doi.org/10.1007/s00248-014-0557-4
  15. Bharti, N., D. Yadav, D. Barnawal, D. Maji, and A. Kalra. 2013. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J. Microb. Biotech. 29(2):379-387. https://doi.org/10.1007/s11274-012-1192-1
  16. Bouchotroch, S., E. Quesada, A. del Moral, I. Liamas, and V. Bejar .2001. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide producing bacterium. Int. J. Syst. Evol. Microbiol. 51:1625-1632. https://doi.org/10.1099/00207713-51-5-1625
  17. Brugnoli, E, and O. Bjorkman. 1992. Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ${\Delta}pH$ and zeaxanthin formation. Photosynth. Res. 32(1):23-35. https://doi.org/10.1007/BF00028795
  18. Bui, E.N. 2013. Soil salinity: A neglected factor in plant ecology and biogeography. J. Arid Environ. 92:14-25. https://doi.org/10.1016/j.jaridenv.2012.12.014
  19. Cantrell, I.C. and R.G. Linderman. 2001. Pre-inoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil. 233:269-281. https://doi.org/10.1023/A:1010564013601
  20. Cheng, Z., E. Park, and B.R. Glick. 2007. 1-Aminocyclopropane- 1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53:912-918. https://doi.org/10.1139/W07-050
  21. Chowdhury, N., P. Marschner, and R.G. Burns. 2011. Soil microbial activity and community composition: impact of changes in matric and osmotic potential. Soil Biol. Biochem. 43(6):1229-1236. https://doi.org/10.1016/j.soilbio.2011.02.012
  22. Cramer, G.R. 2002. Sodium-calcium interactions under salinity stress. In: Salinity: Environment-plants-molecules, p.205-228. In: M. Lauchli, and U. Luttge (ed.). Kluwer Academic Publishers, London, UK.
  23. Cuartero, J., M.C. Bolarin, M.J. Asins, and V. Moreno. 2005. Increasing salt tolerance in the tomato. J. Experimental Botany. 57:1045-1058.
  24. DasGupta, S.M., N. Khan, and C.S. Nautiyal. 2006. Biologic control ability of plant growth promoting Paenibacillus lentimorbus NRRL B-30488 isolated from Milk. Curr. Microbiol. 53:502-505. https://doi.org/10.1007/s00284-006-0261-9
  25. Dregne, H. E. and N.T. Chou. 1992. Global desertification dimensions and costs, p.73-92. In: Degradation and restoration of arid lands. Texas Tech University, Lubbock.
  26. Duan, J., K.M. Muller, T.C. Charles, S. Vesely, and B.R. Glick. 2009. 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microbial. Ecol. 57:423-436. https://doi.org/10.1007/s00248-008-9407-6
  27. Durand, A., S. Piutti, M. Rue, J.L. Morel, G. Echevarria, and E. Benizri. 2015. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil. 399:1-14.
  28. Egamberdieva, D., and D. Jabborova. 2015. Efficiency of Phytohormone-Producing Pseudomonas to Improve Salt Stress Tolerance in Jew's Mallow (Corchorus olitorius L.). p. 201-213. In: Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer International Publishing, Switzerland.
  29. Egamberdieva, D., G. Renella, S.Wirth, and R. Islam. 2010. Secondary salinity effects on soil microbial biomass. Biol. Fertil. Soils. 46:445-449. https://doi.org/10.1007/s00374-010-0452-1
  30. Esringü, A., D. Kaynar, and M. Turan. 2016. Ameliorative Effect of Humic Acid and Plant Growth Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress. Commun. Soil Sci. Plan. 47:1-21 https://doi.org/10.1080/00103624.2015.1089260
  31. Feng, G., F.S. Zhang, X. Li, C.Y. Tian, C. Tang, and Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12:185-190. https://doi.org/10.1007/s00572-002-0170-0
  32. Flowers, T. J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307-319. https://doi.org/10.1093/jxb/erh003
  33. Geddie, J.L. and I.W. Sutherland. 1993. Uptake of materials by bacterial polysaccharides. J. Appl. Bacteriol. 74:467-472. https://doi.org/10.1111/j.1365-2672.1993.tb05155.x
  34. Ghassemi, F., A.J. Jakeman, and H.A. Nix. 1995. Salinization of land and water resources. human causes, extent, management, and case studies. University of New South Wales, Sydney, Australia.
  35. Glick, B., D. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190(1):63-8. https://doi.org/10.1006/jtbi.1997.0532
  36. Glick, B.R. and Y. Bashan. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15(2):353-378. https://doi.org/10.1016/S0734-9750(97)00004-9
  37. Glick, B.R., C. Liu, S. Ghosh, and E.B. Dumbroff. 1997a. The effect of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 on the development of canola seedlings subjected to various stresses. Soil Biol. Biochem. 29:1233-1239. https://doi.org/10.1016/S0038-0717(97)00026-6
  38. Glick, B.R., C. Liu, S. Ghosh, and E.B. Dumbroff. 1997b. Early development of canola seedlings in the presence of the plant growth promoting rhizobacterium Pseudomonas putida gr12-2. Soil Biol. Biochem. 29:1233-1239. https://doi.org/10.1016/S0038-0717(97)00026-6
  39. Grattan, S.R. and C.M. Grieve. 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 38:275-300. https://doi.org/10.1016/0167-8809(92)90151-Z
  40. Grichko, V. P. and B.R. Glick. 2001. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol. Biochem. 39:19-25. https://doi.org/10.1016/S0981-9428(00)01217-1
  41. Grichko, V.P. and B.R. Glick. 2001a. Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Plant Physiol. Biochem. 39:11-17. https://doi.org/10.1016/S0981-9428(00)01212-2
  42. Hahn, A. and H.K. March. 2009. Mitogen activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol. 149:1207-1210. https://doi.org/10.1104/pp.108.132241
  43. Hao, M.V., M. Kocur, and K. Komagata. 1984. Marinococcus gen. nov., a new genus for motile cocci with Meso-diaminopimelic acid in the cell wall: and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. Nov. J. Gen. Appl. Microbiol. 30:449-459. https://doi.org/10.2323/jgam.30.449
  44. Hariprasad, P. and S.R. Niranjana. 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil. 316:13-24. https://doi.org/10.1007/s11104-008-9754-6
  45. Hartmann, A. and W. Zimmer. 1994. Physiology of Azospirillum. In: Azospirillum/plant associations. p. 15-39. In: Y. Okon (ed.). CRC press Inc. Boca Raton, FL. USA.
  46. Hessini, K., M. Lachaal, and A. Soltani. 2005. Physiological response to sodium chloride of wild Swiss chard. J. Plant Nutr. 28:877-888. https://doi.org/10.1081/PLN-200055567
  47. Hillel, D. 2000 Salinity Management for Sustainable Irrigation. The World Bank, Washington, DC. USA.
  48. Hough, D.W. and M.J. Danson. 1999. Extremozymes. Curr. Opinion Chem. Biol. 3:39-46. https://doi.org/10.1016/S1367-5931(99)80008-8
  49. Ibekwe, A.M., J.A. Poss, S.R. Grattan, C.M. Grieve, and D. Suarez .2010. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol. Biochem. 42:567-575.
  50. Indiragandhi, P., R. Anandham, K. Kim, W. Yim, M. Madhaiyan, and T.M. Sa .2008. Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J. Microbiol. Biotechnol. 24:1037-1045. https://doi.org/10.1007/s11274-007-9572-7
  51. Indiragandhi, P., R. Anandham, M. Madhaiyan, and T.M. Sa. 2007. Characterization of plant growth promoting traits of bacteria isolated from larval guts of diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56(4):327-333. https://doi.org/10.1007/s00284-007-9086-4
  52. International Rice Research Institute. 1981. Control and management of rice pests. In: Annual Report for 2006. IRRI, Los Banos, Philippines, pp 202-203.
  53. Iqbal, U., N. Jamil, I. Ali, and S. Hasnain. 2010. Effect of zinc-phosphate-solubilizing bacterial strains on growth of Vigna radiata. Ann. Microbiol. 61:1869-2044.
  54. Jahromi, F., R. Aroca, R. Porcel, and J.M. Ruiz-Lozano. 2008. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol. 55:45-53. https://doi.org/10.1007/s00248-007-9249-7
  55. Jalili, F., K. Khavazi, E. Pazira, A. Nejati, H.A. Rahmani, H.R. Sadaghiani, and M. Miransari. 2009. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. plant physiol. 166(6):667-674. https://doi.org/10.1016/j.jplph.2008.08.004
  56. Jha, B., I. Gontia, and A. Hartmann. 2011. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil. 356(1-2):265-277.
  57. Jha, Y., R.B. Subramanian, and S. Patel. 2011. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta physiol. Plant. 33(3):797-802. https://doi.org/10.1007/s11738-010-0604-9
  58. Jiang, C., E.J. Belfield, Y. Cao, J.A.C. Smith and N.P. Harberd. 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell, 25(9):3535-3552. https://doi.org/10.1105/tpc.113.115659
  59. Jiang, Q., D. Roche, T.A. Monaco, and S. Durham. 2006. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res. 96:269-278. https://doi.org/10.1016/j.fcr.2005.07.010
  60. Joe, M.M., S. Devaraj, A. Benson, and T. Sa. 2016. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: Evaluation of plant growth promotion and antioxidant activity under salt stress. J. Appl. Res. Med. Aromatic Plant. In press.
  61. Kang, S.M., G.J. Joo, M. Hamayun, C.I. Na, D.H. Shin, H.Y. Kim, J.K. Hong and I.J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strains of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31:277-281. https://doi.org/10.1007/s10529-008-9867-2
  62. Karthikeyan, B., M.M. Joe, M.R. Islam, and T. Sa. 2012. ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis, 56(2):77-86. https://doi.org/10.1007/s13199-012-0162-6
  63. Kloepper, J.W., R. Lifshitz and R.M. Zablotowicz. 1989. Freeliving bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39-44. https://doi.org/10.1016/0167-7799(89)90057-7
  64. Koul, V., A. Adholeya, and M. Kochar, M. 2015. Sphere of influence of indole acetic acid and nitric oxide in bacteria. J. Basic Microbiol. 55(5):543-553. https://doi.org/10.1002/jobm.201400224
  65. Krause, M.S., T.J.J. De-Ceuster, S.M. Tiquia, F.C. Jr. Michel, L.V. Madden, and H.A.J. Hoitink. 2003. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology. 93:1292-1300. https://doi.org/10.1094/PHYTO.2003.93.10.1292
  66. Kumari, S., A. Vaishnav, S. Jain, A. Varma, D.K. Choudhary. 2016. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J. Microbiol. Biotechnol. 32(1):1-10. https://doi.org/10.1007/s11274-015-1971-6
  67. Larsen, H. 1986. Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol. Rev. 39(1):3-7. https://doi.org/10.1111/j.1574-6968.1986.tb01835.x
  68. Liu, R., Y. Zhang, R. Ding, D. Li, Y. Gao and M. Yang. 2009. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J. Biosci. Bioeng. 108(5):400-407. https://doi.org/10.1016/j.jbiosc.2009.05.010
  69. Madhaiyan, M., S. Poonguzhali, J. Ryu and T.M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta. 224:268-278. https://doi.org/10.1007/s00425-005-0211-y
  70. Margesin, R. and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for Biotechnology. Extremophiles. 5:73-83. https://doi.org/10.1007/s007920100184
  71. Marschner, H. 1995. Mineral nutrition of higher plants, p. 147-148. In: C. Webb and F. Mayituna (ed.). Plant and animal cells process possibilities. Academic Press, London.
  72. Maser, P., M. Gierth, and J.I. Schroeder. 2002. Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil. 247:43-54. https://doi.org/10.1023/A:1021159130729
  73. Mashimbye, Z. E., M.A. Cho, J.P. Nell, W.P. De clercq, A. Van niekerk, and D.P. Turner. 2012. Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils. Pedosphere, 22(5):640-649. https://doi.org/10.1016/S1002-0160(12)60049-6
  74. Mavi, M.S., P. Marschner, D.J. Chittleborough, J.W. Cox, and J. Sanderman. 2012. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol. Biochem. 45:8-13. https://doi.org/10.1016/j.soilbio.2011.10.003
  75. Mayak, S., T. Tirosh and B.R. Glick. 2004a. Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42:565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
  76. Mayak, S., T. Tirosh, and B.R. Glick. 2004b. Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci. 166:525-530. https://doi.org/10.1016/j.plantsci.2003.10.025
  77. Metwali, E.M., T.S. Abdelmoneim, M.A. Bakheit, and N.M. Kadasa. 2015. Alleviation of salinity stress in faba bean (Vicia faba L.) plants by inoculation with plant growth promoting rhizobacteria (PGPR). Plant Omics, 8(5):449.
  78. Mitsuchi, M., P. Wichaidit, and S. Jeungnijnirund. 1986. Outline of soils of the North-East plateau, Thailand: their characteristics and constraints. Technical p. 131, paper No. 1. Khon-Kaen: Agricultural Development Research Center in the North-East.
  79. Morrissey, E.M., J.L. Gillespie, J.C. Morina and R.B. Franklin. 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global Change Biol. 20(4):1351-1362. https://doi.org/10.1111/gcb.12431
  80. Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59:651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  81. Netondo, G.W., J.C. Onyango, and E. Beck. 2004. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci. 44:797-805. https://doi.org/10.2135/cropsci2004.7970
  82. Nielsen, P., D. Fritze, and F.G. Priest. 1995. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiol.141:1745-1761. https://doi.org/10.1099/13500872-141-7-1745
  83. Oren, A. 1993. Ecology of extremely halophilic microorganisms. In: The biology of halophilic bacteria. P.25-53. In: R.H. Vreeland and L.I. Hochstein (eds.). CRC Press Inc. Boca Raton, FL. USA.
  84. Pan, C., C. Liu, H. Zhao, and Y. Wang. 2013. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. Euro. J. Soil Biol. 55:13-19 https://doi.org/10.1016/j.ejsobi.2012.09.009
  85. Pankhurst, C.E., S. Yu, B. Hawke, and B.D. Harch. 2001. Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol. Fertil. Soils. 33:204-217. https://doi.org/10.1007/s003740000309
  86. Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim, and T.M. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res.160:127-133. https://doi.org/10.1016/j.micres.2004.10.003
  87. Puente, M.E., G. Holguin, B.R. Glick and Y. Bashan. 1999. Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater. FEMS Microbiol. Ecol. 29:283-292. https://doi.org/10.1111/j.1574-6941.1999.tb00619.x
  88. Qadir, R., A. Ghafoor, and G. Murtaza. 2000. Amelioration strategies for saline soils: A review. Land Degrad. Develop. 11:501-521. https://doi.org/10.1002/1099-145X(200011/12)11:6<501::AID-LDR405>3.0.CO;2-S
  89. Qin, S., Y.J. Zhang, B. Yuan, P.Y. Xu, K. Xing, J. Wang, and J.H. Jiang. 2014. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growthpromoting activity under salt stress. Plant soil, 374(1-2): 753-766. https://doi.org/10.1007/s11104-013-1918-3
  90. Ramos-Cormenzana, A. 1993. Ecology of moderately halophilic bacteria. In: The biology of halophilic bacteria. p. 55-86. In : R.H. Vreeland and L.I. Hochstein (eds.). CRC Press Inc. Boca Raton, FL. USA.
  91. Reed, M.L.E. and B.R. Glick. 2005. Growth of canola (Brassica napus) in the presence of plant growth promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol. 51:1061-1069. https://doi.org/10.1139/w05-094
  92. Rengasamy, P. 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57:1017-1023. https://doi.org/10.1093/jxb/erj108
  93. Rengasamy, P. 2010. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 37(7):613-620. https://doi.org/10.1071/FP09249
  94. Rivero, R. M., T.C. Mestre, R. Mittler, F. Rubio, F. Garcia-Sanchez, and V. Martinez. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell Environ. 37(5):1059-1073. https://doi.org/10.1111/pce.12199
  95. Rodriguez-Valera, F.1986. The ecology and taxonomy of aerobic chemoorganotrophic halophilic eubacteria. FEMS Microbiol. Rev. 39:7-22.
  96. Rueda-Puente, E.O., J.L. Garcia-Hernandez, P. Preciado-Rangel, B. Murillo-Amador, M.A. Tarazon-Herrera, A. Flores-Hernandez, J. Holguin-Pena, A.N. Aybar, J.M. Barron-Hoyos, D. Weimers, O. Mwandemele, G. Kaaya, J. Larrinaga-Mayoral, and E. Troyo-Dieguez. 2007. Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth promoting bacteria. J. Agron. Crop Sci. 193:167-176. https://doi.org/10.1111/j.1439-037X.2007.00254.x
  97. Saleque, M.A., N.N. Choudhury, S.M. Rezaul-Karim, and G.M. Panaullah. 2005. Mineral nutrient and yield of four rice genotypes in the farmer's fields of salt affected soils. J. Plant Nutr. 28:865-875. https://doi.org/10.1081/PLN-200055560
  98. Salman, A., M. Al-Qinna, and M. Al Kuisi. 2014. Spatial analysis of soil and shallow groundwater physicochemical parameters in El-Mujib Basin-central Jordan. J. Asian Earth Sci. 79:366-381. https://doi.org/10.1016/j.jseaes.2013.10.008
  99. Saravanakumar, D. and R. Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol. 102:1283-1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x
  100. Schachtman, D. and W. Liu. 1999. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Tren. Plant Sci. 4:281-287. https://doi.org/10.1016/S1360-1385(99)01428-4
  101. Schlicht, M., J. Ludwig‐Müller, C. Burbach, D. Volkmann, and F. Baluska. 2013. Indole‐3‐butyric acid induces lateral root formation via peroxisome‐derived indole‐3‐acetic acid and nitric oxide. New Phytologist. 200(2):473-482. https://doi.org/10.1111/nph.12377
  102. Setia, R., P. Gottschalk, P. Smith, P. Marschner, J. Baldock, D. Setia, and J. Smith. 2013. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 465:267-272. https://doi.org/10.1016/j.scitotenv.2012.08.028
  103. Shilpi, M., K. Girdhar, and P.N. Tuteja. 2008. Calcium and salt-stress signaling in plants: Shedding light on SOS pathway. Arch. Biochem. Biophy. 471:146-158. https://doi.org/10.1016/j.abb.2008.01.010
  104. Siddikee, M.A., P.S. Chauhan, R. Anandham, G.H. Han, and T. Sa. 2010. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J. Microbiol. Biotechnol. 20(11):1577-1584. https://doi.org/10.4014/jmb.1007.07011
  105. Siddikee, M.A., S. Sundaram, M.Chandrasekaran, K. Kim, G. Selvakumar, and T. Sa. 2015. Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination. J. Korean Soc. Appl. Bl. 58(2):237-241. https://doi.org/10.1007/s13765-015-0025-y
  106. Silini, A., H. Cherif-Silini, and B. Yahiaoui. 2016. Growing varieties durum wheat (Triticum durum) in response to the effect of osmolytes and inoculation by Azotobacter chroococcum under salt stress. Afr. J. Microbiol. Res. 10(12):387-399. https://doi.org/10.5897/AJMR2015.7723
  107. Silvertooth, J.C., A. Galadima, E.R. Norton, and R. Tronstad. 2001. Evaluation of crop management effects on fiber micronaire, 2000. Cotton: A College of Agriculture Report.
  108. Spark, D.L. 1995. Environmental soil chemistry. California, Academic Press.
  109. Squires, V.R. and H.M. El Shaer. 2015. Halophytic and Salt-Tolerant Feedstuffs in the Mediterranean Basin and Arab region, p.453. In: V.R. Squires, and H.M. El Shaer (ed.). Impacts on Nutrition, Physiology and Reproduction of Livestock. CRC Press.
  110. Suarez, C., S. Ratering, R. Geissler-Plaum, and S. Schnell. 2014. Hartmannibacter diazotrophicus gen. nov., sp. nov., a phosphate-solubilizing and nitrogen-fixing alphaproteobacterium isolated from the rhizosphere of a natural salt-meadow plant. Int.J. Syst. Evol. Microbial. 64(9):3160-3167. https://doi.org/10.1099/ijs.0.064154-0
  111. Swain, M.R., R.C. Ray, and C.S. Nautiyal. 2008. Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against postharvest yam (Dioscorea rotundata L.) pathogens. Curr. Microbiol. 57:407-411. https://doi.org/10.1007/s00284-008-9213-x
  112. Szabolcs, I. 1994. Salt affected soils as the ecosystem for halophytes. pp. 19-24. In Halophytes as a resource for livestock and for rehabilitation of degraded lands. Springer Netherlands
  113. Szaboles, I. 1989. Salt affected soils. CRC Press Inc. Boca Raton. FL, USA.
  114. Sziderics, A.H., F. Rasche, F. Trognitz, A. Sessitsch, and E. Wilhelm. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can. J. Microbiol. 53:1195-1202. https://doi.org/10.1139/W07-082
  115. Talsma, T. 1963. The control of saline groundwater. Thesis for the degree of doctor in land technology, University of Wageningen. Reprint of Bulletin of University of Wageningen. 63:1-68.
  116. Tripathi, S., A. Chakraborty, K. Chakrabartia, and B.K. Bandyopadhyayc. 2007. Enzyme activities and microbial biomass in coastal soils of India. Soil Biol. Biochem. 39:2840-2848. https://doi.org/10.1016/j.soilbio.2007.05.027
  117. United States Department of Agriculture. 1954. Diagnosis and improvement of saline and alkali soils. p 1-160 In: Richards LA (ed) Agriculture hand book no. 60. Oxford & IBH, New Delhi.
  118. Upadhyay, S.K., D.P. Singh, and R. Saikia. 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 59:489- 496. https://doi.org/10.1007/s00284-009-9464-1
  119. Vaishnav, A., S. Kumari, S. Jain, A. Varma, and D. K. Choudhary. 2015. Putative bacterial volatile‐mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J. Appl. Microbiol. 119:539-551. https://doi.org/10.1111/jam.12866
  120. Wong, V.N.L., R.C. Dalal, R.S.B.Greene. 2008. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol. Fert. Soil. 44:943-953. https://doi.org/10.1007/s00374-008-0279-1
  121. Wu, Z., H. Yue, J. Lu and C. Li. 2012. Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J. Microbial. Biotechnol. 28(6):2383-2393. https://doi.org/10.1007/s11274-012-1047-9
  122. Yaish, M.W. and P.P. Kumar. 2015. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front. Plant Science. 6, 1-5.
  123. Yoon, J.H., I.G. Kim, K.H. Kang, T.K. Oh, and Y.H. Park. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 53:1297-1303. https://doi.org/10.1099/ijs.0.02365-0
  124. Zahir, A.Z., U. Ghani, M. Naveed, S.M. Nadeem, and H.N. Asghar .2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt stressed conditions. Arch. Microbiol. 191:415-424. https://doi.org/10.1007/s00203-009-0466-y
  125. Zahran, H.H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soils. 25:211-223. https://doi.org/10.1007/s003740050306
  126. Zerrouk, I.Z., M. Benchabane, L. Khelifi, K. Yokawa, J. Ludwig- Muller, and F. Baluska. 2016. A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J. Plant Physiol. 191:111-119. https://doi.org/10.1016/j.jplph.2015.12.009
  127. Zhang, X., L. Wang, H. Meng, H. Wen, Y. Fan, and J. Zhao. 2011. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant mol. Boil. 75(4-5):365-378. https://doi.org/10.1007/s11103-011-9732-x
  128. Zvyagintseva, I.S. and A.L. Tarasov. 1987. Extreme halophilic bacteria from saline soils. Mikrobiologiya. 56:839-844.