Browse > Article
http://dx.doi.org/10.7745/KJSSF.2016.49.4.355

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants  

Shin, Wansik (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Foresty and Fisheries)
Siddikee, Md. Ashaduzzaman (Department of Environmental and Biological Chemistry, Chungbuk National University)
Joe, Manoharan Melvin (Department of Environmental and Biological Chemistry, Chungbuk National University)
Benson, Abitha (Department of Environmental and Biological Chemistry, Chungbuk National University)
Kim, Kiyoon (Department of Environmental and Biological Chemistry, Chungbuk National University)
Selvakumar, Gopal (Department of Environmental and Biological Chemistry, Chungbuk National University)
Kang, Yeongyeong (Department of Environmental and Biological Chemistry, Chungbuk National University)
Jeon, Seonyoung (Department of Environmental and Biological Chemistry, Chungbuk National University)
Samaddar, Sandipan (Department of Environmental and Biological Chemistry, Chungbuk National University)
Chatterjee, Poulami (Department of Environmental and Biological Chemistry, Chungbuk National University)
Walitang, Denver (Department of Environmental and Biological Chemistry, Chungbuk National University)
Chanratana, Mak (Department of Environmental and Biological Chemistry, Chungbuk National University)
Sa, Tongmin (Department of Environmental and Biological Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.49, no.4, 2016 , pp. 355-367 More about this Journal
Abstract
Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.
Keywords
Soil salinity; Saline; Sodic; Saline-sodic; Plant growth promoting bacteria; 1-amino cyclopropane-1-carboxylate (ACC);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Karthikeyan, B., M.M. Joe, M.R. Islam, and T. Sa. 2012. ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis, 56(2):77-86.   DOI
2 Kloepper, J.W., R. Lifshitz and R.M. Zablotowicz. 1989. Freeliving bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39-44.   DOI
3 Koul, V., A. Adholeya, and M. Kochar, M. 2015. Sphere of influence of indole acetic acid and nitric oxide in bacteria. J. Basic Microbiol. 55(5):543-553.   DOI
4 Krause, M.S., T.J.J. De-Ceuster, S.M. Tiquia, F.C. Jr. Michel, L.V. Madden, and H.A.J. Hoitink. 2003. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology. 93:1292-1300.   DOI
5 Kumari, S., A. Vaishnav, S. Jain, A. Varma, D.K. Choudhary. 2016. Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J. Microbiol. Biotechnol. 32(1):1-10.   DOI
6 Larsen, H. 1986. Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol. Rev. 39(1):3-7.   DOI
7 Liu, R., Y. Zhang, R. Ding, D. Li, Y. Gao and M. Yang. 2009. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J. Biosci. Bioeng. 108(5):400-407.   DOI
8 Madhaiyan, M., S. Poonguzhali, J. Ryu and T.M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta. 224:268-278.   DOI
9 Margesin, R. and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for Biotechnology. Extremophiles. 5:73-83.   DOI
10 Ahmad, F., I. Ahmad, and M.S. Khan. 2008. Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res.163:173-181.   DOI
11 Ahmad, S., N. Khan, M.Z. Iqbal, A. Hussain, and M. Hassan. 2002. Salt tolerance of cotton (Gossypium hirsutum L.). Asian J. Plant Sci. 1(6):715-719   DOI
12 Ashraf, M.1994. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13:17-42.   DOI
13 Akhtar, S.S., M.N. Andersen, M. Naveed, Z.A. Zahir, and F. Liu. 2015. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct. Plant Biol. 42(8):770-781.   DOI
14 Ali, S., T.C. Charles, and B.R. Glick. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80:160-167.   DOI
15 Asada, K. 1992. Ascorbate peroxidase - a hydrogen peroxidescavenging enzyme in plants. Physiol. Plant. 85(2):235-241.   DOI
16 Ayers, R.S. and D.W. Westcot. 1994. Water Quality for Agriculture, Irrigation and Drainage Paper 29, rev. 1, 6 th ed., Food and Agriculture Organization of the United Nations, Rome
17 Azarmi, F., V. Mozafari, P.D. Abbaszadeh, and M. Hamidpour. 2015. Biochemical, physiological and antioxidant enzymatic activity responses of pistachio seedlings treated with plant growth promoting rhizobacteria and Zn to salinity stress. Acta Physiol. Plant. 38(1):1-21.
18 Bal, H.B., L. Nayak, S. Das, and T.K Adhya. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 366(1-2):93-105.   DOI
19 Barka, E.A., J. Nowak, and C. Clement. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans Strain PsJN. Appl. Environ. Microbiol. 72:7246-7252.   DOI
20 Bastida, F., A. Zsolnay, T. Hernandez, and C. Garcia. 2008. Past, present and future of soil quality indices: a biological perspective. Geoderma. 147:159-171.   DOI
21 Bharti, N., D. Yadav, D. Barnawal, D. Maji, and A. Kalra. 2013. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J. Microb. Biotech. 29(2):379-387.   DOI
22 Belimov, A.A., V.I. Safronova, T.A. Sergeyeva, T.N. Egorova, V.A. Matveyeva, V.E. Tsyganov, A.Y. Borisov, I.A. Tikhonovich, C. Kluge, A. Preisfeld, K.J. Dietz, and V.V. Stepanok. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane- 1-carboxylate deaminase. Can. J. Microbiol. 47:642-652.   DOI
23 Bharti, N., D. Barnawal, A. Awasthi, A. Yadav, and A. Kalra. 2013. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol. Plant. 36(1):45-60.   DOI
24 Bharti, N., D. Barnawal, D. Maji, and A. Kalra. 2015. Halotolerant PGPRs Prevent Major Shifts in Indigenous Microbial Community Structure Under Salinity Stress. Microb. Ecol. 70(1):196-208.   DOI
25 Bouchotroch, S., E. Quesada, A. del Moral, I. Liamas, and V. Bejar .2001. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide producing bacterium. Int. J. Syst. Evol. Microbiol. 51:1625-1632.   DOI
26 Brugnoli, E, and O. Bjorkman. 1992. Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ${\Delta}pH$ and zeaxanthin formation. Photosynth. Res. 32(1):23-35.   DOI
27 Bui, E.N. 2013. Soil salinity: A neglected factor in plant ecology and biogeography. J. Arid Environ. 92:14-25.   DOI
28 Chowdhury, N., P. Marschner, and R.G. Burns. 2011. Soil microbial activity and community composition: impact of changes in matric and osmotic potential. Soil Biol. Biochem. 43(6):1229-1236.   DOI
29 Cantrell, I.C. and R.G. Linderman. 2001. Pre-inoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil. 233:269-281.   DOI
30 Cheng, Z., E. Park, and B.R. Glick. 2007. 1-Aminocyclopropane- 1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53:912-918.   DOI
31 Cramer, G.R. 2002. Sodium-calcium interactions under salinity stress. In: Salinity: Environment-plants-molecules, p.205-228. In: M. Lauchli, and U. Luttge (ed.). Kluwer Academic Publishers, London, UK.
32 Cuartero, J., M.C. Bolarin, M.J. Asins, and V. Moreno. 2005. Increasing salt tolerance in the tomato. J. Experimental Botany. 57:1045-1058.
33 DasGupta, S.M., N. Khan, and C.S. Nautiyal. 2006. Biologic control ability of plant growth promoting Paenibacillus lentimorbus NRRL B-30488 isolated from Milk. Curr. Microbiol. 53:502-505.   DOI
34 Dregne, H. E. and N.T. Chou. 1992. Global desertification dimensions and costs, p.73-92. In: Degradation and restoration of arid lands. Texas Tech University, Lubbock.
35 Duan, J., K.M. Muller, T.C. Charles, S. Vesely, and B.R. Glick. 2009. 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microbial. Ecol. 57:423-436.   DOI
36 Durand, A., S. Piutti, M. Rue, J.L. Morel, G. Echevarria, and E. Benizri. 2015. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil. 399:1-14.
37 Feng, G., F.S. Zhang, X. Li, C.Y. Tian, C. Tang, and Z. Rengel. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12:185-190.   DOI
38 Egamberdieva, D., and D. Jabborova. 2015. Efficiency of Phytohormone-Producing Pseudomonas to Improve Salt Stress Tolerance in Jew's Mallow (Corchorus olitorius L.). p. 201-213. In: Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer International Publishing, Switzerland.
39 Egamberdieva, D., G. Renella, S.Wirth, and R. Islam. 2010. Secondary salinity effects on soil microbial biomass. Biol. Fertil. Soils. 46:445-449.   DOI
40 Esringü, A., D. Kaynar, and M. Turan. 2016. Ameliorative Effect of Humic Acid and Plant Growth Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress. Commun. Soil Sci. Plan. 47:1-21   DOI
41 Flowers, T. J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307-319.   DOI
42 Geddie, J.L. and I.W. Sutherland. 1993. Uptake of materials by bacterial polysaccharides. J. Appl. Bacteriol. 74:467-472.   DOI
43 Ghassemi, F., A.J. Jakeman, and H.A. Nix. 1995. Salinization of land and water resources. human causes, extent, management, and case studies. University of New South Wales, Sydney, Australia.
44 Glick, B., D. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190(1):63-8.   DOI
45 Glick, B.R. and Y. Bashan. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15(2):353-378.   DOI
46 Grichko, V. P. and B.R. Glick. 2001. Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol. Biochem. 39:19-25.   DOI
47 Glick, B.R., C. Liu, S. Ghosh, and E.B. Dumbroff. 1997a. The effect of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 on the development of canola seedlings subjected to various stresses. Soil Biol. Biochem. 29:1233-1239.   DOI
48 Glick, B.R., C. Liu, S. Ghosh, and E.B. Dumbroff. 1997b. Early development of canola seedlings in the presence of the plant growth promoting rhizobacterium Pseudomonas putida gr12-2. Soil Biol. Biochem. 29:1233-1239.   DOI
49 Grattan, S.R. and C.M. Grieve. 1992. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 38:275-300.   DOI
50 Grichko, V.P. and B.R. Glick. 2001a. Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Plant Physiol. Biochem. 39:11-17.   DOI
51 Hahn, A. and H.K. March. 2009. Mitogen activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol. 149:1207-1210.   DOI
52 Hao, M.V., M. Kocur, and K. Komagata. 1984. Marinococcus gen. nov., a new genus for motile cocci with Meso-diaminopimelic acid in the cell wall: and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. Nov. J. Gen. Appl. Microbiol. 30:449-459.   DOI
53 Hariprasad, P. and S.R. Niranjana. 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil. 316:13-24.   DOI
54 Hartmann, A. and W. Zimmer. 1994. Physiology of Azospirillum. In: Azospirillum/plant associations. p. 15-39. In: Y. Okon (ed.). CRC press Inc. Boca Raton, FL. USA.
55 Ibekwe, A.M., J.A. Poss, S.R. Grattan, C.M. Grieve, and D. Suarez .2010. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol. Biochem. 42:567-575.
56 Hessini, K., M. Lachaal, and A. Soltani. 2005. Physiological response to sodium chloride of wild Swiss chard. J. Plant Nutr. 28:877-888.   DOI
57 Hillel, D. 2000 Salinity Management for Sustainable Irrigation. The World Bank, Washington, DC. USA.
58 Hough, D.W. and M.J. Danson. 1999. Extremozymes. Curr. Opinion Chem. Biol. 3:39-46.   DOI
59 Indiragandhi, P., R. Anandham, K. Kim, W. Yim, M. Madhaiyan, and T.M. Sa .2008. Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J. Microbiol. Biotechnol. 24:1037-1045.   DOI
60 Indiragandhi, P., R. Anandham, M. Madhaiyan, and T.M. Sa. 2007. Characterization of plant growth promoting traits of bacteria isolated from larval guts of diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56(4):327-333.   DOI
61 International Rice Research Institute. 1981. Control and management of rice pests. In: Annual Report for 2006. IRRI, Los Banos, Philippines, pp 202-203.
62 Iqbal, U., N. Jamil, I. Ali, and S. Hasnain. 2010. Effect of zinc-phosphate-solubilizing bacterial strains on growth of Vigna radiata. Ann. Microbiol. 61:1869-2044.
63 Jahromi, F., R. Aroca, R. Porcel, and J.M. Ruiz-Lozano. 2008. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecol. 55:45-53.   DOI
64 Mavi, M.S., P. Marschner, D.J. Chittleborough, J.W. Cox, and J. Sanderman. 2012. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biol. Biochem. 45:8-13.   DOI
65 Marschner, H. 1995. Mineral nutrition of higher plants, p. 147-148. In: C. Webb and F. Mayituna (ed.). Plant and animal cells process possibilities. Academic Press, London.
66 Maser, P., M. Gierth, and J.I. Schroeder. 2002. Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil. 247:43-54.   DOI
67 Mashimbye, Z. E., M.A. Cho, J.P. Nell, W.P. De clercq, A. Van niekerk, and D.P. Turner. 2012. Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils. Pedosphere, 22(5):640-649.   DOI
68 Mayak, S., T. Tirosh and B.R. Glick. 2004a. Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem. 42:565-572.   DOI
69 Mayak, S., T. Tirosh, and B.R. Glick. 2004b. Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci. 166:525-530.   DOI
70 Metwali, E.M., T.S. Abdelmoneim, M.A. Bakheit, and N.M. Kadasa. 2015. Alleviation of salinity stress in faba bean (Vicia faba L.) plants by inoculation with plant growth promoting rhizobacteria (PGPR). Plant Omics, 8(5):449.
71 Mitsuchi, M., P. Wichaidit, and S. Jeungnijnirund. 1986. Outline of soils of the North-East plateau, Thailand: their characteristics and constraints. Technical p. 131, paper No. 1. Khon-Kaen: Agricultural Development Research Center in the North-East.
72 Saravanakumar, D. and R. Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol. 102:1283-1292.   DOI
73 Rueda-Puente, E.O., J.L. Garcia-Hernandez, P. Preciado-Rangel, B. Murillo-Amador, M.A. Tarazon-Herrera, A. Flores-Hernandez, J. Holguin-Pena, A.N. Aybar, J.M. Barron-Hoyos, D. Weimers, O. Mwandemele, G. Kaaya, J. Larrinaga-Mayoral, and E. Troyo-Dieguez. 2007. Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth promoting bacteria. J. Agron. Crop Sci. 193:167-176.   DOI
74 Saleque, M.A., N.N. Choudhury, S.M. Rezaul-Karim, and G.M. Panaullah. 2005. Mineral nutrient and yield of four rice genotypes in the farmer's fields of salt affected soils. J. Plant Nutr. 28:865-875.   DOI
75 Salman, A., M. Al-Qinna, and M. Al Kuisi. 2014. Spatial analysis of soil and shallow groundwater physicochemical parameters in El-Mujib Basin-central Jordan. J. Asian Earth Sci. 79:366-381.   DOI
76 Schachtman, D. and W. Liu. 1999. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Tren. Plant Sci. 4:281-287.   DOI
77 Schlicht, M., J. Ludwig‐Müller, C. Burbach, D. Volkmann, and F. Baluska. 2013. Indole‐3‐butyric acid induces lateral root formation via peroxisome‐derived indole‐3‐acetic acid and nitric oxide. New Phytologist. 200(2):473-482.   DOI
78 Setia, R., P. Gottschalk, P. Smith, P. Marschner, J. Baldock, D. Setia, and J. Smith. 2013. Soil salinity decreases global soil organic carbon stocks. Sci. Total Environ. 465:267-272.   DOI
79 Shilpi, M., K. Girdhar, and P.N. Tuteja. 2008. Calcium and salt-stress signaling in plants: Shedding light on SOS pathway. Arch. Biochem. Biophy. 471:146-158.   DOI
80 Jalili, F., K. Khavazi, E. Pazira, A. Nejati, H.A. Rahmani, H.R. Sadaghiani, and M. Miransari. 2009. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. plant physiol. 166(6):667-674.   DOI
81 Jha, B., I. Gontia, and A. Hartmann. 2011. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil. 356(1-2):265-277.
82 Jha, Y., R.B. Subramanian, and S. Patel. 2011. Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta physiol. Plant. 33(3):797-802.   DOI
83 Jiang, C., E.J. Belfield, Y. Cao, J.A.C. Smith and N.P. Harberd. 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell, 25(9):3535-3552.   DOI
84 Jiang, Q., D. Roche, T.A. Monaco, and S. Durham. 2006. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res. 96:269-278.   DOI
85 Joe, M.M., S. Devaraj, A. Benson, and T. Sa. 2016. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: Evaluation of plant growth promotion and antioxidant activity under salt stress. J. Appl. Res. Med. Aromatic Plant. In press.
86 Kang, S.M., G.J. Joo, M. Hamayun, C.I. Na, D.H. Shin, H.Y. Kim, J.K. Hong and I.J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strains of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31:277-281.   DOI
87 Nielsen, P., D. Fritze, and F.G. Priest. 1995. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiol.141:1745-1761.   DOI
88 Morrissey, E.M., J.L. Gillespie, J.C. Morina and R.B. Franklin. 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global Change Biol. 20(4):1351-1362.   DOI
89 Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59:651-681.   DOI
90 Netondo, G.W., J.C. Onyango, and E. Beck. 2004. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci. 44:797-805.   DOI
91 Oren, A. 1993. Ecology of extremely halophilic microorganisms. In: The biology of halophilic bacteria. P.25-53. In: R.H. Vreeland and L.I. Hochstein (eds.). CRC Press Inc. Boca Raton, FL. USA.
92 Pan, C., C. Liu, H. Zhao, and Y. Wang. 2013. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. Euro. J. Soil Biol. 55:13-19   DOI
93 Pankhurst, C.E., S. Yu, B. Hawke, and B.D. Harch. 2001. Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol. Fertil. Soils. 33:204-217.   DOI
94 Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim, and T.M. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res.160:127-133.   DOI
95 Puente, M.E., G. Holguin, B.R. Glick and Y. Bashan. 1999. Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater. FEMS Microbiol. Ecol. 29:283-292.   DOI
96 Silvertooth, J.C., A. Galadima, E.R. Norton, and R. Tronstad. 2001. Evaluation of crop management effects on fiber micronaire, 2000. Cotton: A College of Agriculture Report.
97 Siddikee, M.A., P.S. Chauhan, R. Anandham, G.H. Han, and T. Sa. 2010. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J. Microbiol. Biotechnol. 20(11):1577-1584.   DOI
98 Siddikee, M.A., S. Sundaram, M.Chandrasekaran, K. Kim, G. Selvakumar, and T. Sa. 2015. Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination. J. Korean Soc. Appl. Bl. 58(2):237-241.   DOI
99 Silini, A., H. Cherif-Silini, and B. Yahiaoui. 2016. Growing varieties durum wheat (Triticum durum) in response to the effect of osmolytes and inoculation by Azotobacter chroococcum under salt stress. Afr. J. Microbiol. Res. 10(12):387-399.   DOI
100 Spark, D.L. 1995. Environmental soil chemistry. California, Academic Press.
101 Squires, V.R. and H.M. El Shaer. 2015. Halophytic and Salt-Tolerant Feedstuffs in the Mediterranean Basin and Arab region, p.453. In: V.R. Squires, and H.M. El Shaer (ed.). Impacts on Nutrition, Physiology and Reproduction of Livestock. CRC Press.
102 Suarez, C., S. Ratering, R. Geissler-Plaum, and S. Schnell. 2014. Hartmannibacter diazotrophicus gen. nov., sp. nov., a phosphate-solubilizing and nitrogen-fixing alphaproteobacterium isolated from the rhizosphere of a natural salt-meadow plant. Int.J. Syst. Evol. Microbial. 64(9):3160-3167.   DOI
103 Swain, M.R., R.C. Ray, and C.S. Nautiyal. 2008. Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against postharvest yam (Dioscorea rotundata L.) pathogens. Curr. Microbiol. 57:407-411.   DOI
104 Zahir, A.Z., U. Ghani, M. Naveed, S.M. Nadeem, and H.N. Asghar .2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt stressed conditions. Arch. Microbiol. 191:415-424.   DOI
105 Wu, Z., H. Yue, J. Lu and C. Li. 2012. Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J. Microbial. Biotechnol. 28(6):2383-2393.   DOI
106 Yaish, M.W. and P.P. Kumar. 2015. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front. Plant Science. 6, 1-5.
107 Yoon, J.H., I.G. Kim, K.H. Kang, T.K. Oh, and Y.H. Park. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 53:1297-1303.   DOI
108 Zahran, H.H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soils. 25:211-223.   DOI
109 Zerrouk, I.Z., M. Benchabane, L. Khelifi, K. Yokawa, J. Ludwig- Muller, and F. Baluska. 2016. A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J. Plant Physiol. 191:111-119.   DOI
110 Zhang, X., L. Wang, H. Meng, H. Wen, Y. Fan, and J. Zhao. 2011. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant mol. Boil. 75(4-5):365-378.   DOI
111 Zvyagintseva, I.S. and A.L. Tarasov. 1987. Extreme halophilic bacteria from saline soils. Mikrobiologiya. 56:839-844.
112 Reed, M.L.E. and B.R. Glick. 2005. Growth of canola (Brassica napus) in the presence of plant growth promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can. J. Microbiol. 51:1061-1069.   DOI
113 Qadir, R., A. Ghafoor, and G. Murtaza. 2000. Amelioration strategies for saline soils: A review. Land Degrad. Develop. 11:501-521.   DOI
114 Qin, S., Y.J. Zhang, B. Yuan, P.Y. Xu, K. Xing, J. Wang, and J.H. Jiang. 2014. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growthpromoting activity under salt stress. Plant soil, 374(1-2): 753-766.   DOI
115 Ramos-Cormenzana, A. 1993. Ecology of moderately halophilic bacteria. In: The biology of halophilic bacteria. p. 55-86. In : R.H. Vreeland and L.I. Hochstein (eds.). CRC Press Inc. Boca Raton, FL. USA.
116 Rengasamy, P. 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57:1017-1023.   DOI
117 Rengasamy, P. 2010. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 37(7):613-620.   DOI
118 Rivero, R. M., T.C. Mestre, R. Mittler, F. Rubio, F. Garcia-Sanchez, and V. Martinez. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell Environ. 37(5):1059-1073.   DOI
119 Rodriguez-Valera, F.1986. The ecology and taxonomy of aerobic chemoorganotrophic halophilic eubacteria. FEMS Microbiol. Rev. 39:7-22.
120 Szabolcs, I. 1994. Salt affected soils as the ecosystem for halophytes. pp. 19-24. In Halophytes as a resource for livestock and for rehabilitation of degraded lands. Springer Netherlands
121 Szaboles, I. 1989. Salt affected soils. CRC Press Inc. Boca Raton. FL, USA.
122 Sziderics, A.H., F. Rasche, F. Trognitz, A. Sessitsch, and E. Wilhelm. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can. J. Microbiol. 53:1195-1202.   DOI
123 Talsma, T. 1963. The control of saline groundwater. Thesis for the degree of doctor in land technology, University of Wageningen. Reprint of Bulletin of University of Wageningen. 63:1-68.
124 Tripathi, S., A. Chakraborty, K. Chakrabartia, and B.K. Bandyopadhyayc. 2007. Enzyme activities and microbial biomass in coastal soils of India. Soil Biol. Biochem. 39:2840-2848.   DOI
125 United States Department of Agriculture. 1954. Diagnosis and improvement of saline and alkali soils. p 1-160 In: Richards LA (ed) Agriculture hand book no. 60. Oxford & IBH, New Delhi.
126 Upadhyay, S.K., D.P. Singh, and R. Saikia. 2009. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 59:489- 496.   DOI
127 Vaishnav, A., S. Kumari, S. Jain, A. Varma, and D. K. Choudhary. 2015. Putative bacterial volatile‐mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J. Appl. Microbiol. 119:539-551.   DOI
128 Wong, V.N.L., R.C. Dalal, R.S.B.Greene. 2008. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol. Fert. Soil. 44:943-953.   DOI