• Title/Summary/Keyword: Safety Demand

Search Result 1,405, Processing Time 0.035 seconds

A Study on the Industrial Competitiveness Analysis of Domestic Autonomous Operation Technology Industry Based on the Porter's Diamond Model (국내 자율운항기술 분야의 산업경쟁력 분석 연구 - 포터(Porter)의 다이아몬드 모델을 기반으로)

  • PARK, Hye-Ri;PARK, Han-Seon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.203-208
    • /
    • 2022
  • Recently, various digital technology issues such as e-Navigation, Maritime Autonomous Surface Ship (MASS) and Smart ships have constantly emerged in the maritime industry, based on the fourth industrial revolution. The International Maritime Organization is gradually tightening regulations for marine safety and marine environmental protection, and these strengthened regulations are leading to new maritime industries. Thus, the purpose of this study was to design a suitable model to analyze the industrial competitiveness of domestic autonomous operation technology industry, based on the Porter's diamond model. Based on a total of five evaluation factors and 13 detailed factors, the industrial competitiveness of the domestic autonomous operation technology industry was evaluated qualitatively and quantitatively. This industry, which is in the early stage of industrial development, was evaluated as 16.9 points relative to indexing industrial competitiveness. Currently, it is characterized by the simultaneous development of related regulations and core technologies, from the establishment of the scope of the industry. The industrial competitiveness evaluation considering these industrial characteristics is expected to serve as the basis for strategic support and new industrial policy, and impact a wide range of related industries such as shipping, logistics, ports, and shipbuilding and equipment industries.

Big Data-based Monitoring System Design for Water Quality Analysis that Affects Human Life Quality (인간의 삶의 질에 영향을 끼치는 수질(물) 분석을 위한 빅데이터 기반 모니터링 시스템 설계)

  • Park, Sung-Hoon;Seo, Yong-Cheol;Kim, Yong-Hwan;Pang, Seung-Peom
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.289-295
    • /
    • 2021
  • Today, the most important factor affecting the quality of human life is thought to be due to the environment. The importance of environmental monitoring systems to improve human life and improve welfare as the magnitude of the damage increases year by year due to the rapid increase in the frequency of hail, typhoons, collapse of incisions, landslides, etc. Is increasing day by day. Among environmental problems, problems caused by water quality have a very high proportion, and as there is a growing concern that the scale of damage will increase when water pollution accidents occur due to urbanization and industrialization, the demand for social water safety nets is increasing. have. In the last 5 years, 259 cases of water pollution (Han River 99, Nakdong River 31, Geum River 25, Seomjin River and Yeongsan River 19, and 85 others) have occurred in the four major river basins. Caused damage. Therefore, it is required to establish a water quality environment management strategy system based on big data that can minimize the uncertainty of the water quality environment by expanding the target of water quality management from the current water quality management system centered on the four major rivers to small and medium-sized rivers, tributaries/branches, and reservoirs. In this paper, we intend to construct and analyze a water quality monitoring system based on big data that can present useful water quality environment information by analyzing the water quality information accumulated for a long time.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

Optimization of the Blanching and Dewatering Processes to Stabilize Quality of Boiled Frozen Ark Shell Scapharca subcrenata for Use as a Non-thermally Prepared Seasoned Seafood Products (비열처리 조미수산가공품용 냉동 자숙 새고막(Scapharca subcrenata)의 품질안정성을 위한 블랜칭 및 탈수공정 최적화)

  • Kim, Ye jin;Park, Si Hyeong;Park, Ji Hoon;Jo, Hye-Jeong;Hwang, Ji-Young;Song, Ho-Su;Choi, Jung-Mi;Kim, Jin Soo;Lee, Jung-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.827-835
    • /
    • 2022
  • Commercial boiled frozen ark shell Scapharca subcrenata (BFAS) is generally used as a seasoned seafood products. One problem facing the industry is that quality decreases during thawing. This study investigated ways to improve quality and shelf-stability of BFAS for use as a non-thermally prepared seasoned seafood products. The Viable bacteria were detected in BFAS after thawing under running water, but were not detected after blanching for over 2 min at 95±5℃. Blanching and dewatering times were optimized by response surface methodology (RSM) to reduce the initial number of bacteria and improve BFAS texture. Experimental design was deemed appropriate because no significant difference (P>0.05) was observed between predicted and actual moisture content, hardness, and overall acceptance values. Optimal blanching and dewatering times were 210 s and 80 s, respectively. Optimized blanching and dewatering processes can significantly improve safety and BAFS qualities including texture. These results indicate that BFAS demand as a staple for home meal replacements can be increased by application of optimized blanching and dewatering processes, especially in Korean seafood processing companies where running water thawing is common.

A Study on the Exploring Education Facility Environment Agenda in the Post COVID-19 Era (포스트 코로나 시대의 교육시설환경 의제 탐색 연구)

  • Choi, Hyeong-Ju;Cho, Jin-Il;Shin, Eun-Gyeong
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.21 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • The purpose of this study is to develop the Korean New Deal policy in the post-corona era, and furthermore, to provide basic data to discover and present a desirable future educational facility environment-related agenda that will help the successful realization of the policy. In order to achieve the above research purpose, we explored the new paradigm shift for the education new deal in the post-COVID-19 era and the future educational facility environment through Korean and overseas related policies, reports, and source books. And a Delphi survey was conducted on panels of experts in the front-line education field, academia, and industry. As a result, 5 areas were derived as key domains of the educational facility environment in the post-COVID-19 era, and a total of 33 agendas [8 in green, 9 in smart, 9 in spatial innovation, 4 in school facilities complexation, and 3 in others (safety)] were derived. The study findings confirmed that the demand for the smart area and spatial innovation area as the educational facility environment agenda in the post-COVID-19 era was relatively high compared to the green area or school facilities complexation area. Therefore, when establishing educational facility policies in the future, it is necessary to establish customized policies that reflect the demands and needs for the smart area and spatial innovation area, whereas it is necessary to focus more on establishing policies that improve awareness and interest about the green area and school facilities complexation area.

BEEF MEAT TRACEABILITY. CAN NIRS COULD HELP\ulcorner

  • Cozzolino, D.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1246-1246
    • /
    • 2001
  • The quality of meat is highly variable in many properties. This variability originates from both animal production and meat processing. At the pre-slaughter stage, animal factors such as breed, sex, age contribute to this variability. Environmental factors include feeding, rearing, transport and conditions just before slaughter (Hildrum et al., 1995). Meat can be presented in a variety of forms, each offering different opportunities for adulteration and contamination. This has imposed great pressure on the food manufacturing industry to guarantee the safety of meat. Tissue and muscle speciation of flesh foods, as well as speciation of animal derived by-products fed to all classes of domestic animals, are now perhaps the most important uncertainty which the food industry must resolve to allay consumer concern. Recently, there is a demand for rapid and low cost methods of direct quality measurements in both food and food ingredients (including high performance liquid chromatography (HPLC), thin layer chromatography (TLC), enzymatic and inmunological tests (e.g. ELISA test) and physical tests) to establish their authenticity and hence guarantee the quality of products manufactured for consumers (Holland et al., 1998). The use of Near Infrared Reflectance Spectroscopy (NIRS) for the rapid, precise and non-destructive analysis of a wide range of organic materials has been comprehensively documented (Osborne et at., 1993). Most of the established methods have involved the development of NIRS calibrations for the quantitative prediction of composition in meat (Ben-Gera and Norris, 1968; Lanza, 1983; Clark and Short, 1994). This was a rational strategy to pursue during the initial stages of its application, given the type of equipment available, the state of development of the emerging discipline of chemometrics and the overwhelming commercial interest in solving such problems (Downey, 1994). One of the advantages of NIRS technology is not only to assess chemical structures through the analysis of the molecular bonds in the near infrared spectrum, but also to build an optical model characteristic of the sample which behaves like the “finger print” of the sample. This opens the possibility of using spectra to determine complex attributes of organic structures, which are related to molecular chromophores, organoleptic scores and sensory characteristics (Hildrum et al., 1994, 1995; Park et al., 1998). In addition, the application of statistical packages like principal component or discriminant analysis provides the possibility to understand the optical properties of the sample and make a classification without the chemical information. The objectives of this present work were: (1) to examine two methods of sample presentation to the instrument (intact and minced) and (2) to explore the use of principal component analysis (PCA) and Soft Independent Modelling of class Analogy (SIMCA) to classify muscles by quality attributes. Seventy-eight (n: 78) beef muscles (m. longissimus dorsi) from Hereford breed of cattle were used. The samples were scanned in a NIRS monochromator instrument (NIR Systems 6500, Silver Spring, MD, USA) in reflectance mode (log 1/R). Both intact and minced presentation to the instrument were explored. Qualitative analysis of optical information through PCA and SIMCA analysis showed differences in muscles resulting from two different feeding systems.

  • PDF

Studies on the Environmentally-friendly Production of Ginseng(Panaxs ginseng C.A. Mayer) by Lime Sulfur Treatment (석회유황합제를 이용한 청정 인삼 생산 연구)

  • Chang, K.J.;Sung, I.J.;Lee, S.S.;Ahn, C.H.;Byun, J.M.;Park, C.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.15 no.1
    • /
    • pp.183-202
    • /
    • 2013
  • The demand of ginseng which has attracted many people for a long time has expanded further with great spotlight ; but it has caused anxiety of some safety-sensitive customers due to unavoidable pesticides and its weakness for disease and insect pest. On the other hand, sluggish studies on effective doses of ginseng and red ginseng which is produced and processed after hardship have worsened confusion of customers. Against this backdrop, this study is about to find out measures for safe ginseng cultivation and effective dose of white or red ginseng which are safely produced and reaches meaningful conclusions as follows ; As for a study to minimize the use of chemical fertilizers and pesticides or to change them into environmentally-friendly products, ginseng cultivation utilizing Lime Sulfur complex might be an alternative. The effects of Lime Sulfur complex are great on ginseng seeding with under 200 times compound KHCO3 and five-year-old ginseng with over 200 times compound using NaHCO3. When using with green materials like Bordeaux mixture, there would be great potential to realize ginseng without pesticide use.

Research on Real-time Flow Rate Measurement and Flood Forecast System Based on Radar Sensors (레이다 센서 기반 실시간 유량 측정 및 홍수 예측 시스템 연구)

  • Lee, Young-Woo;Seok, Hyuk-Jun;Jung, Kee-Heon;Na, Kuk-Jin;Lee, Seung-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.288-290
    • /
    • 2022
  • As part of the SOC digitization for smart water management and flood prevention, the government reported that automatic and remote control system for drainage facilities (180 billion won) to 57% of national rivers and established a real-time monitoring system (30 billion won). In addition, they were also planning to establish a smart dam safety management system (15 billion won) based on big data at 11 regions. Therefore, research is needed for smart water management and flood prevention system that can accurately calculate the flow rate through real-time flow rate measurement of rivers. In particular, the most important thing to improve the system implementation and accuracy is to ensure the accuracy of real-time flow rate measurements. To this end, radar sensors for measuring the flow rate of electromagnetic waves in the United States and Europe have been introduced and applied to the system in Korea, but demand for improvement of the system continues due to high price range and performance. Consequently, we would like to propose an improved flow rate measurement and flood forecast system by developing a radar sensor for measuring the electromagnetic surface current meter for real-time flow rate measurement.

  • PDF

Investigation of sports for all requirement types of People with intellectual Disability: Focused On Q methodology (지적장애인의 생활체육 요구유형 탐색: Q방법론을 중심으로)

  • Kim, Hye-Min;Kim, So-Hyung;Park, Jin-Woo;Lee, Hyun-Su
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.1
    • /
    • pp.597-609
    • /
    • 2015
  • The purpose of this research is to analyze requirements for sports for all of the intellectually handicapped and their characteristics. Subjects for this study consisted of 33 undergraduate students who belonged to the department of physical education in P University. The Q-population a total of 28 people were selected including 16 handicapped college students from P welfare center and 12 members from the vocational adjustment class. The card used in Q sort was 27 categories of sports for all suggested by the korea Paralympic Committee. The result of Q-sorting were coded and analysed using QUANL pc program. According to the research result, Firstly, the requirement types of sports for all of the intellectually handicapped revealed to be four types(The eigen values of the five types of attitudes are 5.6, 2.3, 1.9, and 1.7): Secondly, the characteristics for each five types were determined to be experiential-value Pursuing type(type 1), interest-value pursuing type(type 2), purpose0orientation pursign type(type 3) and Safety-oriented pursuing type(type 4). Through the characteristics of each of the five types. Such results of the research suggest that the demand of the mentally ills for sports for all can be diverse and there can be a variety of types based on the background factors.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.