• 제목/요약/키워드: SWING PLANE

검색결과 36건 처리시간 0.022초

골프 클럽의 스윙궤도와 스윙면에 대한 고찰 (A Study on the Swing Path and Plane of the Club in Golf Swing)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제14권1호
    • /
    • pp.99-115
    • /
    • 2004
  • In order to Know the correct swing methods in golf swing it is important to understand the whole swing path but also the concept of swing plane. But, most amateur golfers don't Know the concept of swing plane well. Therefore this study was trying to make a good material that makes the concept of swing plane easy to understand. A good swing motion data was obtained from a professional golfer using the three-dimensional DLT method. This swing motion was divided into 10 phases and evaluated using the concept of swing plane. The result of the analyze show a good matches between the path of the club and swing plane. This result was summarized as a 3 dimensional graphics to provide a good material to teach the golf swing well.

골프 드라이버 스윙 시 스윙 플레인에 따른 클럽 헤드 및 골프볼의 운동학적 변인과 신체 정렬 변인의 비교 분석 (Comparison of Kinematic Variables of the Club Head, Golf Ball and Body Alignment according to Swing Plane during Golf Driver Swing)

  • Young-Tae, Lim;Moon-Seok, Kwon;Jae-Woo, Lee
    • 한국운동역학회지
    • /
    • 제32권4호
    • /
    • pp.147-152
    • /
    • 2022
  • Objective: The purpose of this study was to analyze the effects of club head and golf ball kinematics and body alignment according to the swing plane during golf driver swing. Method: Sixteen college golfers participated in this study. Kinematic data of the club head and golf ball were collected using golf swing analysis system (Trackman Ver. 3e). The body alignment variables were collected using 8 motion capture system. An Independent samples t-test was used for comparison between the Out-to-In group and In-to-Out group, and the statistical significance level was set at .05. Results: For the club head related variables, club path and club face angle showed higher values in Out-to-In swing plane than In-to-Out swing plane. For the kinematic variables of the golf ball, the total distance showed a higher value in the In-to-Out swing plane than that of the Out-to-In swing plane. For the body alignment, the In-to-Out swing plane showed higher values than the Out-to-In swing plane for the pelvis rotation angle and trunk rotation angle. Conclusion: This study suggest that it would be more effective to use the In-to-Out swing plane for increasing the total distance during the golf driver swing.

엘리트 골프 선수의 드라이버 스윙 시 스윙 평면 분석 (The Analysis of Swing Plane of Elite Golfers During Drive Swing)

  • 임영태
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.59-66
    • /
    • 2009
  • 본 연구의 목적은 국내 엘리트 골프선수들을 대상으로 3차원 스윙 평면 분석(swing plane analysis)을 통해 스윙 평면의 편평도를 확인하여 이들 스윙이 어떤 유형의 스윙인지를 확인하는 것이 목적이었다. 또한 편평도를 이용한 스윙평면 분석 이외에 또 다른 운동학적 변인을 이용한 스윙 평면 분류가 가능한지도 확인하였다. 그 결과 편평도와 핸디캡간의 상관성은 없는 것으로 판명되었고 단일 및 다중 평면 스윙 그룹간의 편평도 비교를 실시한 결과 유의한 차이를 확인할 수가 있었다. 두 스윙 그룹을 구분하는 대표적인 특징인 백스윙 및 팔로우드로우에서의 스윙 궤도차이를 확인하기 위해 실시한 두 스윙 그룹 간 event 별 편평도 비교에서 그 유의한 차이를 확인함으로서 본 연구에서 정의한 오차범위 10cm는 두 스윙 스타일을 구분하는데 유효한 것으로 확인이 되었다. 편평도를 이용한 스윙평면 분석 이외에 운동학적 변인인 두 스윙 그룹 간 샤프트 단위벡터 비교와 샤프트 원위점 변위 비교를 event 별로 실시한 결과 통계적으로 유의한 차이는 확인이 되지 않았다. 하지만 전체적인 변인들의 이동패턴을 살펴 볼 때 각각의 스윙 그룹의 특징을 잘 보여주고 있기 때문에 스윙 스타일을 판단하는 간접적인 지표가 될 가능성을 보여주었다.

다기능성 웨어 착용이 골프 드라이브 스윙에 미치는 효과 (Effects of golf drive swing on multiple functional wear wearing)

  • 김정우;박선경;어미경
    • 복식문화연구
    • /
    • 제22권4호
    • /
    • pp.632-639
    • /
    • 2014
  • The purpose of this study was to verify the effect of drive swing on multiple functional wear wearing in golf. The subjects were 6 men ($22.67{\pm}0.82$ yrs, $175.42{\pm}3.42cm$, $78.75{\pm}4.78kg$), who had career each with at least 8 yers golf experience with right-hander. For kinemetical analysis, this study used equipments with 7 motion capture cameras (300Hz) and analysis program (Nexus1.5). The total time of the club head, displacement magnitude of the COM and swing plane were compared of according to functional wear wearing and non-weraing during golf drive swing. The results of the study are as follows. The total time of the club on wearing ($2.18{\pm}0.06sec$) was faster than non-wearing ($2.52{\pm}0.15sec$). Displacement magnitude of the COM on wearing ($4.06{\pm}0.67cm$) was shorter than non-wearing ($5.79{\pm}0.72cm$). Also, swing plane was found to be significantly different of 3 phase excepted BST-DS (back swing top-down swing) phase. AD-BST (address-back swing top) phase on wearing ($13.86{\pm}3.08cm$) decrease more than non-wearing ($20.82{\pm}3.99cm$), DS-IP (down swing-impact) phase on wearing ($6.25{\pm}1.35cm$) decrease more than non-wearing ($7.18{\pm}1.52cm$) and IP-FT (impact-follow though) phase on wearing ($7.93{\pm}2.09cm$) decrease more than non-wearing($9.68{\pm}2.02cm$). The multiple functional wear wearing was contribution to come close for one-plane, a long with consistency and accuracy on golf drive swing.

골프 스윙에서 $\Delta$-평면과 스핀 ($\Delta$-plan and spin in the golf swing)

  • 조창호;박종대;이근춘
    • 자연과학논문집
    • /
    • 제14권2호
    • /
    • pp.1-14
    • /
    • 2004
  • 본 연구는 스윙 변수의 관찰과 스윙에 미치는 원인을 종합적으로 분석한다. 골프공은 임팩트 후에는 제어가 되지 않는다. 공은 혼자 날아가 버린다. 그러므로 임팩트 전에 제어를 해야 된다. 이 논문에서 연구의 주제는 훅과 슬라이스의 원인을 찾아보고 해결의 방법을 모색하려고 한다. $\Delta$-평면은 임팩트후의 초기속도와 스핀축의 직각 방향인 양력의 방향을 포함하는 평면으로 스윙 속도 방향벡터와 클럽면의 직각방향으로 이루어진 평면이다. 골프 스윙에 있어서 미스샷의 교정에 $\Delta$-평면을 이용하기 위하여 이론적인 고찰과 기존의 이론과의 비교 연구하여 골퍼의 스윙을 지도하여 경기력을 향상하는데 본 연구의 목적이다.

  • PDF

Growld Plane SOI MOSFET의 단채널 현상 개선 (Reduction of short channel Effects in Ground Plane SOI MOSFET′s)

  • 장성준;윤세레나;유종근;박종태
    • 대한전자공학회논문지SD
    • /
    • 제41권4호
    • /
    • pp.9-14
    • /
    • 2004
  • 매몰 산화층 밑의 실리콘 기판에 자기정렬 방법으로 ground plane 전극을 만든 SOI MOSFET의 단채널 현상과 Punchthrough 특성을 측정·분석하였다. 채널 길이가 $0.2{\mu}m$ 이하의 소자에서는 GP-SOI 소자가 FD-SOI 소자보다 채널 길이에 따른 문턱전압 저하 및 subthreshold swing이 작고 DIBL 현상이 크게 개선됨을 알 수 있었다. 기판전압에 따른 문턱전압 특성으로부터 GP-SOI 소자의 body factor가 FD-SOI 소자보다 큰 것을 알 수 있었다. 그리고 punchthrough 전압 특성으로부터 GP-SOI 소자의 punchthrough 전압이 FD-SOI 소자보다 큰 것을 알 수 있었다.

부분상태 궤환제어를 이용한 비선형 천정크레인의 진자각제어 (Anti-swing of the Nonlinear Overhead Crane Using Partial State Feedback Control)

  • 이종규;이상룡
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.907-917
    • /
    • 1997
  • The purpose of this study is to design an anti-sway motion for industrial overhead cranes which transport objects on a horizontal plane by adjusting movements of a trolley motor and a girder motor. The movement of a hoist motor has not been considered at this time since its role was assumed to move objects only vertically, therefore, not to affect the swing motion of objects. The dynamic behavior of the swing motion shows nonlinear characteristics, which makes the design of anti-sway motion controller difficult. First of all, the nonlinear state equation for the motion of industrial overhead cranes has been derived. Then they have been linearized about normal operating states determined by the dynamic characteristics of motor motion-acceleration, constant speed, and deceleration, and deceleration, during transportation. The partial state feedback control algorithm based on this linearized state equation has been developed on order to suppress the swing motion. The simulation results have demonstrated satisfactory performance of the proposed controller.

앞으로 달리기와 뒤로 달리기 시 하지 커플링각 분석 (Analysis of the Lower Extremity's Coupling Angles During Forward and Backward Running)

  • 류지선
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.149-163
    • /
    • 2006
  • The purpose of this study was to compare the lower extremity's joint and segment coupling patterns between forward and backward running in subjects who were twelve healthy males. Three-dimensional kinematic data were collected with Qualisys system while subjects ran to forward and backward. The thigh internal/external rotation and tibia internal/external rotation, thigh flexion/extension and tibia flexion/extension, tibia internal/external rotation and foot inversion/eversion, knee internal/external rotation and ankle inversion/eversion, knee flexion/extension and ankle inversion/eversion, knee flexion/extension and ankle flexion/extension, and knee flexion/extension and tibia internal/external rotation coupling patterns were determined using a vector coding technique. The comparison for each coupling between forward and backward running were conducted using a dependent, two-tailed t-test at a significant level of .05 for the mean of each of five stride regions, midstance(1l-30%), toe-off(31-50%), swing acceleration(51-70%), swing deceleration(71-90), and heel-strike(91-10%), respectively. 1. The knee flexion/extension and ankle flexion/extension coupling pattern of both foreward and backward running over the stride was converged on a complete coordination. However, the ankle flexion/extension to knee flexion/extension was relatively greater at heel-strike in backward running compared with forward running. At the swing deceleration, backward running was dominantly led by the ankle flexion/extension, but forward running done by the knee flexion/extension. 2. The knee flexion/extension and ankle inversion/eversion coupling pattern for both running was also converged on a complete coordination. At the mid-stance. the ankle movement in the frontal plane was large during forward running, but the knee movement in the sagital plane was large during backward running and vice versa at the swing deceleration. 3. The knee flexion/extension and tibia internal/external rotation coupling while forward and backward run was also centered on the angle of 45 degrees, which indicate a complete coordination. However, tibia internal/external rotation dominated the knee flexion/extension at heel strike phase in forward running and vice versa in backward running. It was diametrically opposed to the swing deceleration for each running. 4. Both running was governed by the ankle movement in the frontal plane across the stride cycle within the knee internal/external rotation and tibia internal/external rotation. The knee internal/external rotation of backward running was greater than that of forward running at the swing deceleration. 5. The tibia internal/external rotation in coupling between the tibia internal/external rotation and foot inversion/eversion was relatively great compared with the foot inversion/eversion over a stride for both running. At heel strike, the tibia internal/external rotation of backward running was shown greater than that of forward(p<.05). 6. The thigh internal/external rotation took the lead for both running in the thigh internal/external rotation and tibia internal/external rotation coupling. In comparison of phase, the thigh internal/external rotation movement at the swing acceleration phase in backward running worked greater in comparison with forward running(p<.05). However, it was greater at the swing deceleration in forward running(p<.05). 7. With the exception of the swing deceleration phase in forward running, the tibia flexion/extension surpassed the thigh flexion/extension across the stride cycle in both running. Analysis of the specific stride phases revealed the forward running had greater tibia flexion/extension movement at the heel strike than backward running(p<.05). In addition, the thigh flexion/extension and tibia flexion/extension coupling displayed almost coordination at the heel strike phase in backward running. On the other hand the thigh flexion/extension of forward running at the swing deceleration phase was greater than the tibia flexion/extension, but it was opposite from backward running. In summary, coupling which were the knee flexion/extension and ankle flexion/extension, the knee flexion/extension and ankle inversion/eversion, the knee internal/external rotation and ankle inversion/eversion, the tibia internal/external rotation and foot inversion/eversion, the thigh internal/external rotation and tibia internal/external rotation, and the thigh flexion/extension and tibia flexion/extension patterns were most similar across the strike cycle in both running, but it showed that coupling patterns in the specific stride phases were different from average point of view between two running types.

메탄올-아세톤 분리를 위한 압력 변환 증류 공정에서 환류를 통한 유입 조성 최적화 (Optimal feed compositon of pressure swing distillation system to separate methanol and acetone)

  • 윤영각;서승권;이철진
    • 플랜트 저널
    • /
    • 제13권3호
    • /
    • pp.26-29
    • /
    • 2017
  • 본 연구에서는 메탄올-아세톤 압력 변환 증류 공정에서 유입 흐름의 조성 최적화를 진행하였다. 압력 변환 증류 공정에서 유입 흐름의 조성은 혼합물 분리가능성에 지대한 영향을 주는 것이 잘 알려져 있다. 분리된 순수한 물질의 환류흐름을 이용하여 유입 흐름의 조성을 조절하여 정해진 압력에서 보다 나은 분리효율을 보이는 것을 이번 연구의 목적으로 한다. 환류 흐름이 없는 압력 변환 증류 공정을 기본 공정으로 하여, 메탄올의 환류 흐름이 있는 경우와 아세톤의 환류 흐름이 있는 경우 두 가지 공정이 설계되었다. 각 공정은 Total annual cost로 비교되었으며, 그 결과 환류 흐름이 없는 기본 공정이 가장 유리한 것으로 나타났다.

  • PDF

복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 복소전력의 궤적변화 (A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power Trajectory in Complex Plane)

  • 권오상;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권7호
    • /
    • pp.345-351
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load, the oscillation can be severe and even increase largely and finally the out-of-step condition may un. During the power swing and out-of-step conditions, the apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.