• Title/Summary/Keyword: SURFACE CRYSTALLIZATION

Search Result 432, Processing Time 0.04 seconds

Structural and Discharge Characteristics of MgO Deposited by Oxygen-Ion-Beam-Assisted Deposition in AC PDP (산소 이온 빔 보조 증착된 AC PDP용 MgO 보호막의 특성 연구)

  • Li, Zhao-Hui;Kim, Kwang-Ho;Ahn, Min-Hung;Hong, Seng-Jae;Im, Seung-Kyeok;Kwon, Sang-Jik
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.338-342
    • /
    • 2007
  • The magnesium oxide (MgO) protective layer plays an important role in plasma display panels (PDPs). In this paper, we describe the structural and discharge properties of MgO thin films, which were prepared by the ion-beam-assisted deposition (IBAD) of oxygen as the protective layer of PDPs. The energy of the oxygen ion beam was used as the parameter to control the deposition. We found that the oxygen ion beam energy was effective in determining in structural and discharge characteristics. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when the MgO thin film was deposited with an oxygen ion beam energy of 300 eV. The crystallization of the MgO thin film was also measured by X-ray diffraction analysis, and the surface quality was measured by atomic force microscopy.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

The Crystallization of ZSM-5 at Low Temperature and Atmospheric Pressure (저온 상압하에서 ZSM-5의 결정화 반응)

  • Kim, Wha Jung;Lee, Myung Churl;Kim, Jo Woong;Ha, Jae Mok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.320-331
    • /
    • 1997
  • ZSM-5 was crystallized at low temperature and atmospheric pressure using reflux unit. The overall molar composition used in this study was $7.83Na_2O-0.25Al_2O_3-100SiO_2-xTPABr-yH_2O$ where x is 1 and 3 mol, and y is 3000 mol, 3500 mol, and 4000 mol. $2^3$ factorial experiments were performed with the results of kinetics studies, showing $Na_2O$, TPABr, and $H_2O$ as main factors. The result suggested that the concentration of $H_2O$ is the most important. The morphology of final product was very uniform showing well-defined crystals with BET surface area of ca. $410m^2/g$.

  • PDF

Growth Properties of Sputtered ZnO Thin Films Affected by Oxygen Partial Pressure Ratio (산소분압비에 따른 ZnO 박막의 성장특성)

  • Kang, Man-Il;Kim, Moon-Won;Kim, Yong-Gi;Ryu, Ji-Wook;Jang, Han-O
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.204-210
    • /
    • 2008
  • ZnO thin films were grown on a glass by RF sputtering system with RF power 100W and oxygen partial pressure of $0%{/sim}30%$. Elliptic constants were measured by using a phase modulated spectroscopic ellipsometer and analyzed with the Tauc-Lorentz dispersion formula and best fit method in the range of 1.5 to 3.8eV. Also, scanning electron microscope(SEM) was used for the analysis of surface crystallization condition. From elliptic constants spectra, optical constants, thickness and roughness of ZnO films were evaluated. Total thickness of ZnO films obtained by ellipsometry showed good agreement with SEM data. It was found that the grain size of the films were getting smaller with increasing oxygen partial pressure. Band-gap of ZnO films increase with the oxygen partial pressure. These findings clearly indicate that optical properties of ZnO films are strongly dependent on the oxygen partial pressure. It could be explained that increasing the oxygen partial pressure induced high crystalline imperfection in the ZnO films.

Electrode Properties of Thin Film Battery with LiCoO2 Cathode Deposited by R.F. Magnetron Sputtering at Various Ar Partial Pressures (R.F. 마그네트론 스퍼터링을 이용한 LiCoO2 양극활물질의 Ar 증착분압에 따른 박막전지 전극 특성)

  • Park, H.Y.;Lim, Y.C.;Choi, K.G.;Lee, K.C.;Park, G.B.;Kwon, M.Y.;Cho, S.B.;Nam, S.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • We investigated the electrochemical properties and microstructure on the various argon deposition pressure $(P_{Ar})$ and the low annealing temperature $(400^{\circ}C)$ of $LiCoO_2$ cathodes, which deposited by R.F. magnetron sputtering. The microsuucture and composition of Lico02 thin film was changed as a function of $P_{Ar}$. The capacity and electrochemical properties were improved with Ph of $LiCoO_2$ thin films. The cycling reversibility and stability of thin film batteries were measured by cyclic voltammetry and the constant current charge-discharge. The physical properties of cathode films were analyzed by ICP-AES, XRD, SEM and AFM for composition, crystallization and surface morphology.

Study on Low Temperature Formation of Ferroelectric $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ Thin Films by Sol-Gel Process and Rapid Thermal Annealing (솔-젤법 및 급속열처리에 의한 $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ 박막의 저온형성에 관한 연구)

  • 장현호;송석표;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.312-317
    • /
    • 2000
  • Ferroelectric S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ solutions were synthesized using sol-gel process in which strontinum ethoxide bismuth ethoxide trantalum ethoxide were used a s startring materials. SBT thin films were coated on Pt/Ti/ $SiO_2$/Si substrates by spin-coating. rapid thermal annealing (RTA) was used to promote crystallization. Thin films were annealed at $700^{\circ}C$ for 1 hr in an oxygen atmosphere. This temperature is about 10$0^{\circ}C$ lower than the usual annealing temperature for SBT thin films. Pt top-electrode was deposited by sputtering and thin films were post-annealed at $700^{\circ}C$ for 30 min. to enhance electrical properties. As the RTA temperature increased the higher 2 $P_{r}$ values were obtained. At RTA temperature being 78$0^{\circ}C$ remanent polarization of S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ thin film was 7.73 $\mu$C/cm $_2$ and the leakage current density was 1.14$\times$10$^{-7}$ A/c $m^2$ at 3 V. As RTA temperature increased the breakdown voltage was decreased. It is considered that the low-field breadown is caused by the rough surface of SBT films and forming bismuth metal in SBT thin films.films.lms.

  • PDF

Phase Change Characteristics of Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) Thin Film for PRAM (PRAM을 위한 Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) 박막의 상변환 특성)

  • Shin, Jae-Ho;Baek, Seung-Cheol;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.404-409
    • /
    • 2011
  • An amorphous $Ge_2Sb_2Te_5$ thin film is one of the most commonly used materials for phase-change data storage. In this study, $Au_x(Ge_2Sb_2Te_5)_{1-x}$ thin film amorphous-to-crystalline phase-change rate were evaluated in using 658 nm laser beam. The focused laser beam with a diameter <10 ${\mu}m$ was illuminated in the power (P) and pulse duration (t) ranges of 1-17 mW and 10-460 ns, respectively, with subsequent detection of the responsive signals reflected from the film surface. We also evaluated the material characteristics, such as optical absorption and energy gap, crystalline phases, and sheet resistance of as-deposited and annealed films. The result of experiments showed that the thermal stability of the $Ge_2Sb_2Te_5$ film is largely improved by adding Au.

Preparation and Electrical Properties of BiFeO3 Films by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 BiFeO3 박막의 제조 및 전기적 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.253-258
    • /
    • 2009
  • Mn-substituted $BiFeO_3$(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/$O_2$ mixture of various deposition pressures at room temperature. The effects of the deposition pressure and annealing temperature on the crystallization and electrical properties of BFO films were investigated. X-ray diffraction patterns revealed that BFO films were crystallized for films annealed above $500^{\circ}C$. BFO films annealed at $550^{\circ}C$ for 5 min in $N_2$ atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Bi ratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grain size and surface roughness of films increased with an increase in the deposition pressure. The dielectric constant of BFO films prepared at various conditions shows $127{\sim}187$ at 1 kHz. The leakage current density of BFO films annealed at $500^{\circ}C$ was approximately two orders of magnitude lower than that of $550^{\circ}C$. The leakage current density of the BFO films deposited at $10{\sim}30\;m$ Torr was about $5{\times}10^{-6}{\sim}3{\times}10^{-2}A/cm^2$ at 100 kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealed at $500^{\circ}C$ exhibited remnant polarization(2Pr) of $26.4{\mu}C/cm^2$ at 470 kV/cm.

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

The Characteristics of Mg0.1Zn0.9O Thin Films on PES Substrate According to Fabricated Conditions by PLD (PLD법으로 PES 기판 위에 제작된 Mg0.1Zn0.9O 박막의 제작 조건에 따른 특성)

  • Kim, Sang-Hyun;Lee, Hyun-Min;Jang, NakWon;Park, Mi-Seon;Lee, Won-Jae;Kim, Hong-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.602-607
    • /
    • 2013
  • Concern for the TOS (Transparent Oxide Semiconductor) is increasing with the recent increase in interest for flexible device. Especially MgZnO has attracted a lot of attention. $Mg_xZn_{1-x}O$, which ZnO-based wideband-gap alloys is tuneable the band-gap ranges from 3.36 eV to 7.8 eV. In particular, the flexible substrate, the crystal structure of the amorphous as well as the surface morphology is not good. So research of MgZnO thin films growth on flexible substrate is essential. Therefore, in this study, we studied on the effects of the oxygen partial pressure on the structural and crystalline of $Mg_{0.1}Zn_{0.9}O$ thin films. MgZnO thin films were deposited on PES substrate by using pulsed laser deposition. We used XRD and AFM in order to observe the structural characteristics of MgZnO thin films. UV-visible spectrophotometer was used to get the band gap and transmittance. Crystallization was done at a low oxygen partial pressure. The crystallinity of MgZnO thin films with increasing temperature was improved, Grain size and RMS of the films were increased. MgZnO thin films showed high transmittance over 80% in the visible region.