Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.5.253

Preparation and Electrical Properties of BiFeO3 Films by RF Magnetron Sputtering  

Park, Sang-Shik (School of Nano & Materials Engineering, Kyungpook National University)
Publication Information
Korean Journal of Materials Research / v.19, no.5, 2009 , pp. 253-258 More about this Journal
Abstract
Mn-substituted $BiFeO_3$(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/$O_2$ mixture of various deposition pressures at room temperature. The effects of the deposition pressure and annealing temperature on the crystallization and electrical properties of BFO films were investigated. X-ray diffraction patterns revealed that BFO films were crystallized for films annealed above $500^{\circ}C$. BFO films annealed at $550^{\circ}C$ for 5 min in $N_2$ atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Bi ratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grain size and surface roughness of films increased with an increase in the deposition pressure. The dielectric constant of BFO films prepared at various conditions shows $127{\sim}187$ at 1 kHz. The leakage current density of BFO films annealed at $500^{\circ}C$ was approximately two orders of magnitude lower than that of $550^{\circ}C$. The leakage current density of the BFO films deposited at $10{\sim}30\;m$ Torr was about $5{\times}10^{-6}{\sim}3{\times}10^{-2}A/cm^2$ at 100 kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealed at $500^{\circ}C$ exhibited remnant polarization(2Pr) of $26.4{\mu}C/cm^2$ at 470 kV/cm.
Keywords
$BiFeO_3$; r.f. sputtering; multiferroic film; leakage current;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Dho, C.W. Leung, J. L. M. Driscoll and M.G. Blamire, J. Cryst. Growth, 267, 548 (2004)   DOI   ScienceOn
2 J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Wagmare, N.A. Spaldin, K.M. Rabe, M. Wuttig and R. Ramesh, Science, 299, 1719 (2003)   DOI   ScienceOn
3 W. Eerenstein, F. D. Morison, J. Dho, M. G. Blamire, J. F. Scott and N. D. Mathur, Science, 307, 1203 (2005)   DOI   ScienceOn
4 C. F. Chung and J. M. Wu, Electrochem. Solid-state Lett. 8, F63 (2005)   DOI   ScienceOn
5 C. C. Lee and J. M. Wu, Appl. Surf. Sci., 253, 7069 (2007)   DOI   ScienceOn
6 S. T. Tay, X. H. Jiang, C. H. A. Huan, T. S. Wee and R. Liu, J. Appl. Phys., 88, 5928 (2000)   DOI   ScienceOn
7 Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu and Z. G. Liu, Appl. Phys. Lett., 84, 1731 (2004)   DOI   ScienceOn
8 S. K. Singh and H. Isiwara, Jpn. J. Appl. Phys., 44, L734 (2005)   DOI   ScienceOn
9 J. K. Kim, S. S. Kim and W. J. Kim, Mater. Lett., 59, 4006 (2005)   DOI   ScienceOn
10 W. M. Zhu and Z. G. Ye, Ceram. Int., 30, 1435 (2004)   DOI   ScienceOn
11 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Nature, 426, 55 (2003)   DOI   ScienceOn
12 F. Kubel and H. Schmid, Acta Crystallogr., B 46, 698 (1990)   DOI
13 W. Tian, V. Vaithyanathan, D. G. Schlom, Q. Zhan, S. Y. Yang, Y. H. Chu and R. Ramesh, Appl. Phys. Lett., 90, 172908 (2007)   DOI   ScienceOn
14 J. M. Moreau, C. Michel, R. Gerson and W. J. James, J. Phys. Chem. Sol., 32, 1315 (1971)   DOI   ScienceOn
15 H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, Jpn. J. Appl. Phys., 44, L561 (2005)   DOI   ScienceOn
16 H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E, Jacquet, A. Khodan, J. P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson and M. Viret, Appl. Phys. Lett., 87, 072508 (2005)   DOI   ScienceOn
17 V. M. Ferreira, J. L. Baptista, S. Kamba and J. Petzelt, J. Mater. Sci., 28, 5894 (1993)   DOI