• Title/Summary/Keyword: STI(shallow trench isolation)

Search Result 83, Processing Time 0.023 seconds

Simulations of Fabrication and Characteristics according to Structure Formation in Proposed Shallow Trench Isolation (제안된 얕은 트랜치 격리에서 구조형태에 따른 제작 및 특성의 시뮬레이션)

  • Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • In this paper, the edge effects of proposed structure in active region for high voltage in shallow trench isolation for very large integrated MOSFET were simulated. Shallow trench isolation (STI) is a key process component in CMOS technologies because it provides electrical isolation between transistors and transistors. As a simulation results, shallow trench structure were intended to be electric functions of passive, as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage.

A study on Improvement of $30{\AA}$ Ultra Thin Gate Oxide Quality (얇은 게이트 산화막 $30{\AA}$에 대한 박막특성 개선 연구)

  • Eom, Gum-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.421-424
    • /
    • 2004
  • As the deep sub-micron devices are recently integrated high package density, novel process method for sub $0.1{\mu}m$ devices is required to get the superior thin gate oxide characteristics and reliability. However, few have reported on the electrical quality and reliability on the thin gate oxide. In this paper I will recommand a novel shallow trench isolation structure for thin gate oxide $30{\AA}$ of deep sub-micron devices. Different from using normal LOCOS technology, novel shallow trench isolation have a unique 'inverse narrow channel effects' when the channel width of the devices is scaled down shallow trench isolation has less encroachment into the active device area. Based on the research, I could confirm the successful fabrication of shallow trench isolation(STI) structure by the SEM, in addition to thermally stable silicide process was achiever. I also obtained the decrease threshold voltage value of the channel edge and the contact resistance of $13.2[\Omega/cont.]$ at $0.3{\times}0.3{\mu}m^2$. The reliability was measured from dielectric breakdown time, shallow trench isolation structure had tile stable value of $25[%]{\sim}90[%]$ more than 55[sec].

  • PDF

Effects of Trench Depth on the STI-CMP Process Defects (트랜치 깊이가 STI-CMP 공정 결함에 미치는 영향)

  • 김기욱;서용진;김상용
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The more productive and stable fabrication can be obtained by applying chemical mechanical polishing (CMP) process to shallow trench isolation (STI) structure in 0.18 $\mu\textrm{m}$ semiconductor device. However, STI-CMP process became more complex, and some kinds of defect such as nitride residue, tern oxide defect were seriously increased. Defects like nitride residue and silicon damage after STI-CMP process were discussed to accomplish its optimum process condition. In this paper, we studied how to reduce torn oxide defects and nitride residue after STI-CMP process. To understand its optimum process condition, We studied overall STI-related processes including trench depth, STI-fill thickness and post-CMP thickness. As an experimental result showed that as the STI-fill thickness becomes thinner, and trench depth gets deeper, more tern oxide were found in the CMP process. Also, we could conclude that low trench depth whereas high CMP thickness can cause nitride residue, and high trench depth and over-polishing can cause silicon damage.

  • PDF

The Trench Design Using Sentaurus Tool (Sentaurus를 이용한 트렌치 제작 공정)

  • Lee, Sang-Ho;Jung, Hak-Kee;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.544-547
    • /
    • 2007
  • 본 연구에서는 Shallow trench isolation(STI)를 형성하기 위한 과정을 제시할 것이다. 소자간 분리를 위한 전통적인 방법으로 LOCOS(Local Oxidation of Silicon) 방식이 사용되어왔으나, 소자가 미세해짐에 따라 LOCOS 방식에서 나타나는 단차와 Birds Beak이라는 횡 방향의 산화에 의한 활성 영역의 손실을 무시할 수 없게 되어 새로운 소자 분리 방법이 필요하게 되었으며 이러한 요구에 의해 도입된 Isolation 기술이 Shallow Trench Isolation(STI) 기술이다. 다양한 etching options은 중요한 부분이다. 이 경우에 trench etching의 방향은 점점 좁아지는 측면을 경사지게 하면서 협곡을 만드는 효과적인 방법을 사용할 것이다. 본 연구에서는 좁은 협곡(Shallow trench)의 절반만 시뮬레이션 될 것이다. 만약 모든 협곡의 시뮬레이션을 필요로 한다면 다변의 etching은 사용될 수 있다. STI 공정의 핵심은 trench etch를 좁게하면서 반도체 소자를 어떻게 하면 잘 분리할 수 있는가에 있다.

  • PDF

Effect of pattern spacing and slurry types on the surface characteristics in 571-CMP process (STI-CMP공정에서 표면특성에 미치는 패턴구조 및 슬러리 종류의 효과)

  • Lee, Hoon;Lim, Dae-Soon;Lee, Sang-Ick
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.272-278
    • /
    • 2002
  • Recently, STI(Shallow Trench Isolation) process has attracted attention for high density of semiconductor device as a essential isolation technology. In this paper, the effect of pattern density, trench width and selectivity of slurry on dishing in STI CMP process was investigated by using specially designed isolation pattern. As trench width increased, the dishing tends to increase. At $20{\mu}m$ pattern size, the dishing was decreased with increasing pattern density Low selectivity slurry shows less dishing at over $160{\mu}m$ trench width, whereas high selectivity slurry shows less dishing at below $160{\mu}m$ trench width.

  • PDF

Chemical Mechanical Polishing Characteristics with Different Slurry and Pad (슬러리 및 패드 변화에 따른 기계화학적인 연마 특성)

  • 서용진;정소영;김상용
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.441-446
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process is now widely employed in the ultra large scale integrated (ULSI) semiconductor fabrication. Especially, shallow trench isolation (STI) has become a key isolation scheme for sub-0.13/0.10${\mu}{\textrm}{m}$ CMOS technology. The most important issues of STI-CMP is to decrease the various defects such as nitride residue, dishing, and tom oxide. To solve these problems, in this paper, we studied the planarization characteristics using slurry additive with the high selectivity between $SiO_2$ and $Si_3$$N_4$ films for the purpose of process simplification and in-situ end point detection. As our experimental results, it was possible to achieve a global planarization and STI-CMP process could be dramatically simplified. Also, we estimated the reliability through the repeated tests with the optimized process conditions in order to identify the reproducibility of STI-CMP process.

Oxide Planarization of Trench Structure using Chemical Mechanical Polishing(CMP) (기계화학적 연마를 이용한 트렌치 구조의 산화막 평탄화)

  • 김철복;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.838-843
    • /
    • 2002
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for deep sub-micron technology. The reverse moat etch process has been used for the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process with conventional low selectivity slurries. Thus, the process became more complex, and the defects were seriously increased. In this paper, we studied the direct STI-CMP process without reverse moat etch step using high selectivity slurry(HSS). As our experimental results show, it was possible to achieve a global planarization without the complicated reverse moat process, the STI-CMP process could be dramatically simplified, and the defect level was reduced. Therefore the throughput, yield, and stability in the ULSI semiconductor device fabrication could be greatly improved.

A Study on Characterization and Modeling of Shallow Trench Isolation in Oxide Chemical Mechanical Polishing

  • Kim, Sang-Yong;Chung, Hun-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.24-27
    • /
    • 2001
  • The end point of oxide chemical mechanical polishing (CMP) have determined by polishing time calculated from removal rate and target thickness of oxide. This study is about control of oxide removal amounts on the shallow trench isolation (STI) patterned wafers using removal rate and thickness of blanket (non-patterned) wafers. At first, it was investigated the removal properties of PETEOS blanket wafers, and then it was compared with the removal properties and the planarization (step height) as a function of polishing time of the specific STI patterned wafers. We found that there is a relationship between the oxide removal amounts of blanket and patterned wafers. We analyzed this relationship, and the post CMP thickness of patterned wafers could be controlled by removal rate and removal target thickness of blanket wafers. As the result of correlation analysis, we confirmed that there was the strong correlation between patterned and blanket wafer (correlation factor: 0.7109). So, we could confirm the repeatability as applying for STI CMP process from the obtained linear formula. As the result of repeatability test, the differences of calculated polishing time and actual polishing time was about 3.48 seconds. If this time is converted into the thickness, then it is from 104 $\AA$ to 167 $\AA$. It is possible to be ignored because process margin is about 1800 $\AA$.

  • PDF

A Study for the Improvement of Torn Oxide Defect in STI(Shallow Trench Isolation)Process (STI(Shallow Trench Isolation) 공정에서 Torn Oxide Defect 해결에 관한 연구)

  • Kim, Sang-Yong;Seo, Yong-Jin;Kim, Tae-Hyung;Lee, Woo-Sun;Chung, Hun-Sang;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.723-725
    • /
    • 1998
  • STI CMP process are substituting gradually for LOCOS(Local Oxidation of Silicon) process to be available below sub-0.5um technology and to get planarized. The other hand, STI CMP process(especially STI CMP with RIE etch back process) has some kinds of defect like Nitride residue, Torn Oxide defect, etc. In this paper, we studied how to reduce Torn Oxide defects after STI CMP with RIE etch back process. Although Torn Oxide defects which occur on Oxide on Trench area is not deep and not sever, Torn oxide defects on Moat area is sometimes very deep and makes the yield loss. We did test on pattern wafers witch go through Trench process, APCVD process, and RIE etch back process by using an REC 472 polisher, IC1000/SUV A4 PAD and KOH base slurry to reduce the number of torn defects and to study what is the root causes of torn oxide defects.

  • PDF

A study on the silicon shallow trench etch process for STI using inductively coupled $Cl_2$ and TEX>$HBr/Cl_2$ plasmas (유도결합 $Cl_2$$HBr/Cl_2$ 플라즈마를 이용한 STI용 실리콘 Shallow trench 식각공정에 관한 연구)

  • 이주훈;이영준;김현수;이주욱;이정용;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.267-274
    • /
    • 1997
  • Silicon shallow trenches applied to the STI (Shallow Trench Isolation) of integrated circuits were etched using inductively coupled $Cl_2$ and HBr/$Cl_2$ plasmas and the effects of process parameters on the etch profiles of silicon trenches and the physical damages on the trench sidewall and bottom were investigated. The increase of inductive power and bias voltage in $Cl_2$ and HBr/$Cl_2$ plasmas increased polysilicon etch rates in general, but reduced the etch selectivities over nitride. In case of $Cl_2$ plasma, low inductive power and high bias voltage showed an anisotropic trench etch profile, and also the addition of oxygen or nitrogen to chlorine increased the etch anisotropy. The use of pure HBr showed a positively angled etch profile and the addition of $Cl_2$ to HBr improved the etch profile more anisotropically. HRTEM study showed physical defects formed on the silicon trench surfaces etched in $Cl_2/N_2$ or HBr/ $Cl_2$ plasmas.

  • PDF