• Title/Summary/Keyword: STEAM education program

Search Result 240, Processing Time 0.025 seconds

Development and application of TPACK based STEAM program - Focused on the excretory organs in the 'structure and function of our body' unit - (TPACK 기반 융합프로그램 개발 및 적용 - '우리 몸의 구조와 기능' 단원 중 배설 기관을 중심으로 -)

  • Ko, Dong Guk;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.4
    • /
    • pp.443-459
    • /
    • 2021
  • In this study, a TPACK-based STEAM program was developed and applied under the theme of excretory organs in the 'Structure and Function of Our Body' of the elementary science curriculum. The program was produced and conducted through curriculum analysis and learning goal detailing, learning environment analysis, teaching·learning method and technology selection, TPACK elements arrangement and teaching·learning material development, application and effectiveness verification. Teacher's TPACK considered in STEAM program design process is content knowledge (appearance and work of excretory organs), pedagogical knowledge (STEAM, problem-based learning, research learning, discussion learning, cooperative learning, scientific writing) and technology knowledge (3D printer and smart device application technology). The program consisted of a total of 8 hours of project learning activities and was applied to 29 students in the fifth grade as an experimental group. A program of the same theme developed mainly from textbooks was applied to 27 students in the fifth grade of a comparison group. As a result of the application of the program, the experimental group showed significant improvement in creative problem-solving ability and scientific attitude compared to the comparison group, and the class satisfaction with the STEAM program was also high. However, there was no significant difference in academic achievement ability.

A Study on Educational Effectiveness of Convergence Education Between Design and Robotics - Focus on Mentee and Mentor of 2013 Future Environmental Design Competition for Children - (디자인과 로봇공학 융·복합 체험교육의 교육적 효용성에 관한 연구 - 제2회 어린이 미래환경 디자인대회에 참가한 멘티와 멘토를 대상으로 -)

  • Jang, Yon-Hwa;Ban, Ja-Yuen;Lee, Yun-Hee;Han, Hae-Ryon;Lee, Ju-Hyeong
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.2
    • /
    • pp.62-70
    • /
    • 2014
  • In the knowledge and information society of 21st century, 'Creativity' which is the core of national competitiveness and an important foundation for the development of the country has been emphasized on the importance of it. As a result, the convergence educational programs, as known as STEAM (science, technology, engineering, arts, mathematics) became more and more needed to children for cultivating creativity. As a follow-up study on STEAM program combining robotics and design for children developed by Design Promotion Committee of KIID, this study intends to modify and reanalyze the program and to seize the educational effectiveness of the groups of university students as mentors and children as mentees, The results are as follows; First, although the importance of STEAM education is highlighted, short-term educational programs tend to consist of only the contents of each field: design or science. Second, pre-training and mentoring were helpful to both mentors and children. Third, Children expanded the perception of STEAM concept and increased their interests in career. Mentors recognized the importance and the necessity of STEAM education, and were very satisfied with team activities which gave a new experience of working with other field of people. Therefore, this program provide to children an experience of logical thinking, having interests on uninterested field, and encouraging teamwork. Also, it provides to mentors a chance to develop their potential and experience, and set up a new vision for future.

The Effect of Program for the Gifted based on GI-STEAM model on Leadership, Creative personality, and Learning flow of Elementary Gifted Students (GI-STEAM 모형에 기반한 영재 프로그램이 초등영재의 리더십과 창의적 인성, 학습몰입에 미치는 영향)

  • Hong, Jeong-Hee;Yoo, Mi-Hyun
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.77-99
    • /
    • 2016
  • The purpose of this study was to examine the effect of GI-STEAM program on leadership, creative personality, and learning flow of elementary Gifted Students. GI-STEAM program was the convergence model of Group Investigation that belongs to Co-learning and STEAM framework of learning criterion. The participants were 16 gifted students in a Korean elementary school located in Gyeong-gi province. The experimental design was one group pretest-posttest design. After a pretest on leadership, creative personality, and learning flow was conducted, classes were carried out as GI-STEAM program for the gifted student and a post-test was conducted. The study results of the class that was conducted twelve times for two weeks are as follows. First, Individual area of leadership is meaningfully developed in statistics after GI-STEAM program. The sub-domains of leadership, such as the communication, organization management, society commitment and teamwork showed a statistically significant improvement. Second, the domain of creative personality didn't show meaningful difference after GI-STEAM program. However, the aesthetic in the sub-domains of the creative personality showed a statistically significant improvement. Third, learning flow was meaningfully developed in statistics after GI-STEAM program. The sub-domains of the leadership, such as the balance between challenge and ability, integration with behavior and consciousness, concrete feedback and Autotelic experience showed a statistically significant improvement. In conclusion, GI-STEAM is an effective program for improving ability of communication, aesthetic sensibility, which are core competency of 'creative-convergence' gifted students. For this reason, it is highly considered that various programs applying GI-STEAM should be developed.

Analytic Study on the Effectiveness of Computational Thinking based STEAM Program (컴퓨팅 사고력 기반 융합인재교육 프로그램의 효과성 분석 연구)

  • Kim, Soon-Hwa;Ham, Seong-Jin;Song, Ki-Sang
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.3
    • /
    • pp.105-114
    • /
    • 2015
  • A SW competency based on computational thinking is considered as one of the core competencies in the future society. However, the concept of computational thinking is difficult to be introduced to the class because of the lack of appropriate educational program and the shortage of proper understandings of students and teachers. Thus, we have applied computational thinking based STEAM program and analyzed its effectiveness to explore the educational possibilities of computational thinking. The 49 samples were selected, 23 for the experimental group, and 26 for the control group. Pre-post tests for integrated thinking abilities and computational thinking were done to explore the CT-STEAM program's effectiveness. As a result, the components of integrated thinking abilities, science preference and self-directed learning abilities were enhanced after CT-STEAM instruction. In addition, computational thinking assessment score was statistically significant. We expect new STEAM programs using various computing tools to be developed in the future.

The Effects of Problem Solving Activities of STEAM Program on Middle School Students' Metacognition (STEAM 프로그램의 문제해결활동이 중학생의 메타인지에 미치는 영향)

  • Kang, Changik;Kang, Kyunghee
    • Journal of Science Education
    • /
    • v.40 no.1
    • /
    • pp.17-30
    • /
    • 2016
  • The purpose of this study was to investigate the effects of problem solving activities of STEAM program on metacognition of middle school students. The subject was 63 middle school students. This study was designed single group pre-posttest. A single-group t-test was performed for analyzing difference between the pre-post test on metacognition. In the result of this study, there was significant difference between pretest and posttest on middle school students' metacognition. Also there was significant difference on metacognitive knowledge and metacognitive regulation. The analysis on the subelements of metacognition showed significant difference between pretest and posttest. The multiple regression analysis to investigate the relation of sub-elements of metacognition was performed in this study. The result of the analysis showed high explanatory power among metacognition subelements. This result suggests that the problem solving activities of STEAM program can have a positive effect in promoting metacognition. of the learner.

  • PDF

The Effects of STEAM Education on Scientific Inquiry Skills of High School Students (융합인재교육(STEAM)이 고등학생의 과학탐구능력에 미치는 효과)

  • Lim, Kang-Suk;Kim, Hee-Soo
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.2
    • /
    • pp.180-191
    • /
    • 2014
  • The purpose of this study was to determine the effects on STEAM education for intergrated science inquiry ability of high school students. The experimental and control group were 30 students, respectively. The STEAM program developed by a teacher study group was applied to the experimental group students for 6 months. The control group learned traditional methods. The results of this study showed that the intergrated science inquiry ability of experimental group students were increased positively(P<0.05). Also the abilities as hypothesis, defining variables, determining variables, operational definition and data interpretation improved affirmatively(P<0.05) except graphing.

The preliminary study of developing computational thinking practice analysis tool and its implementation (컴퓨팅 사고 실천 분석도구 개발 및 이의 활용에 대한 기초연구)

  • Park, Young-Shin;Hwang, Jin-Kyung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.2
    • /
    • pp.140-160
    • /
    • 2017
  • The purpose of this study was to develop computational thinking (CT) analysis tool that can be used to analyze CT practices; first, by defining what CT practices are, and then, by identifying which components of CT are reflected in STEAM classes. Exploring various kinds of CT practices, which can be identified while applying the proposed CT analysis tool for exemplary STEAM classes, is another goal of this study. Firstly, to answer the question of "What is CT in science education" and thereby to develop the proposed CT practice analysis tool, three types of published documents about CT definition as the main data in this study have been considered. In the first "analysis tool development" part of this study, the following five elements have been identified as the main components of CT analysis tool as follows; (1) connecting open problems with computing, (2) using tools or computers to develop computing artifact, (3) abstraction process, (4) analyzing and evaluating computing process and artifact, and (5) communicating and cooperating. Based on the understandings that there is a consistent flow among the five components due to their interactions, a flow chart of CT practice has also been developed. In the second part of this study, which is an implementation study, the proposed CT practice analysis tool has been applied in one exemplary STEAM program. To select the candidate STEAM program, four selection criteria have been identified. Then, the proposed CT practice analysis tool has been applied for the selected STEAM program to determine the degree of CT practice reflected in the program and furthermore, to suggest a way of improving the proposed CT analysis tool if it shows some weak points. Through the findings of this study, we suggest that the actual definition of computational thinking will be helpful to converge Technology and Engineering to STEAM education and a strong complement to reinforce STEAM education.

Effect of Elementary STEAM Program Emphasizing Engineering Design Process (공학적 설계 과정을 강조한 초등용 STEAM 프로그램의 효과)

  • Lim, Heejun;Heo, Jinseok;You, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.4
    • /
    • pp.605-617
    • /
    • 2023
  • In this study, a STEAM program emphasizing the engineering design process was developed and applied to investigate its effects on the creative engineering problem-solving proficiency and self-directed learning ability of elementary school students. In addition, the study compared and analyzed differences according to gender. The program was conducted across five sessions targeting 141 students in the fourth grade in an elementary school in the Gyeongin area. The study measured the creative engineering problem-solving disposition and self-directed learning ability of the students before and after the STEAM program. It also administered satisfaction and perception tests. The result confirmed that the STEAM program that emphasizes the engineering design process is effective in improving the creative engineering problem-solving propensity and self-directed learning ability of elementary school students, particularly female ones. Analyzing differences in changes based on gender, the study pinpointed significant improvements among female students in all factors except for the subfactor communication and collaboration within tendencies toward creative engineering problem-solving. For male students, the study observed significant effects in the factors engineering design and communication and collaboration. Lastly, the study discussed the educational implications of the findings.

The Effects of Artificial Intelligence Convergence Education using Machine Learning Platform on STEAM Literacy and Learning Flow

  • Min, Seol-Ah;Jeon, In-Seong;Song, Ki-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.199-208
    • /
    • 2021
  • In this paper, the effect of artificial intelligence convergence education program that provides STEAM education using machine learning platform on elementary school students' STEAM literacy and learning flow was analyzed. A homogeneous group of 44 elementary school 6th graders was divided into an experimental group and a control group. The control group received 10 lessons of general subject convergence class, and the experimental group received 10 lessons of STEAM-based artificial intelligence convergence education using Machine learning for Kids. To develop the artificial intelligence convergence education program, the goals, achievement standards, and content elements of the 2015 revised curriculum to select subjects and class contents is analyzed. As a result of the STEAM literacy test and the learning flow test, there was a significant difference between the experimental group and the control group. In particular, it can be confirmed that the coding environment in which the artificial intelligence function is expanded has a positive effect on learners' learning flow and STEAM literacy. Among the sub-elements of convergence talent literacy, significant differences were found in the areas of personal competence such as convergence and creativity. Among the sub-elements of learning flow, significant differences were found in the areas such as harmony of challenge and ability, clear goals, focus on tasks, and self-purposed experiences. If further expanded research is conducted in the future, it will be a basic research for more effective education for the future.

Defining Science Core Competency in the 2015 revised Science Curriculum and Exploring its Application into STEAM program

  • Park, Young-Shin;Park, Gu Reum
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.361-377
    • /
    • 2018
  • The purpose of the study was to define five science core competencies introduced in the 2015 revised science curriculum with each component and practical indicators into the frame. Science teachers on site could use it in teaching and developing science program to equip students with the competencies to creatively solve problems which is the aim of science education in the $21^{st}$ century. To develop this frame, we contacted 10 experienced science educators and collected the data through a questionnaire. We coded all responses and categorized into the components and practical indicators of each competency which were all compared with those from well-known theories in order to validate. We then contacted other 35 science educators again to construct the validity to fill out the survey of Likert scale. The finalized science core competency included 19 components in total with practical indicators that can be observable and measurable in the classroom. This frame was used to see how it fits into a STEAM program. The finding was that two different topics of the STEAM program displayed the different description of science core competency usage, which could be used as the prescription of the competency as to whether or not it is more promoted in science class.