• 제목/요약/키워드: SOFCs

검색결과 134건 처리시간 0.026초

La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성 (Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells)

  • 황국진;김민규;김한빛;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.

전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성 (Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania)

  • 조해란;최병현;안용태;백성현;노광철;박선민
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.

K2NiF4 type 층상 페롭스카이트 구조 La(Ca)2Ni(Cu)O4-δ의 SOFC 양극 특성 및 결정구조 평가 (Structural and electrochemical characterization of K2NiF4 type layered perovskite as cathode for SOFCs)

  • 명재하;홍연우;이미재;전대우;이영진;황종희;신태호;백종후
    • 한국결정성장학회지
    • /
    • 제25권3호
    • /
    • pp.116-120
    • /
    • 2015
  • 혼합이온 전도체인 $K_2NiF_4$-type 산화물인 $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ 분말을 합성하여 결정구조 분석과 분말의 나노구조화에 따른 고체산화물 연료전지의 양극 성능을 비교 평가하였다. 이온 반경이 큰 Cu가 Ni 자리에 치환되어 Ni-O 팔면체 구조에서 c 축 방향으로 결정구조가 팽창하였으며, Ni-Cu의 Jahn-Teller 뒤틀림으로 산소이온 산화 환원 반응과 이온 전도도 특성에 영향을 주었다. 특히 나노구조의 $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ 분말의 경우 표면 촉매성능이 향상되어 단위 전지 성능 향상 결과를 얻을 수 있었다. Ni-YSZ 음극 지지체에 8YSZ 전해질을 dip-coating한 후 $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ 분말을 양극으로 도포하여 얻은 SOFC 단위성능 측정 결과 $800^{\circ}C$에서 $1w/cm^2$의 최대 출력 값을 얻을 수 있었다.

정전분무증착법에 의한 중온형 고체산화물 연료전지를 위한 Sm0.5Sr0.5CoO3 양극막의 제조 (Fabrication of Sm0.5Sr0.5CoO3 cathode films for intermediate temperature SOFCs by electrostatic spray deposition)

  • 박인유;임종모;정영글;신동욱
    • 한국결정성장학회지
    • /
    • 제20권2호
    • /
    • pp.69-73
    • /
    • 2010
  • 정전분무증착 기술에 의해 증착된 고체산화물 연료전지(SOFC) 양극재료인 SSC 양극막의 미세구조적 변화에 대해 연구하였다. Samarium chloride hexahydrate$(SmCl_3{\cdot}6H_2O)$, strontium chloride hexahydrate$(Co(No_3)_2{\cdot}6H_2O)$, cobalt nitrate hexahydrate$(Co(No_3)_2{\cdot}6H_2O)$의 출발 물질과 용매로써 메탄올이 전구체 용액을 제조하는데 사용되었다. SOFC의 양극을 위해 적합한 다공성의 SSC 막을 제조하였으며, 그 미세구조가 증착시간, 기판온도, 인가전압 등과 같은 공정변수들에 의존한다는 것을 관찰하였다. 주사전자현미경과 X-ray 회절 패턴이 미세구조와 결정성 분석을 위해 사용되었다. 본 연구를 통해, ESD 기술이 요구하는 상의 합성과 다공성의 미세구조를 갖는 SOFC의 양극막을 제조하는데 효과적인 방법임을 입증하였다.

연료극 지지체형 SOFC를 이용한 중.저온용 스택 및 발전시스템 개발 (Development of stacks and power generation systems based on anode-supported SOFCs for intermediate temperature operation)

  • 이태희;최진혁;박태성;유영성;박진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1986-1991
    • /
    • 2007
  • KEPRI has studied anode-supported planar SOFCs and kW class stacks operated at intermediate temperature for development of a combined heat and power unit. A single cell composed of Ni-YSZ/FL/ScSZ/LSCF showed the maximum power density of 0.55 W/$cm^2$ at $650^{\circ}C$ and 1.8 W/$cm^2$ at $750^{\circ}C$. With 37 cells of 10${\times}10cm^2$ and stainless steel interconnects, a 1kW class SOFC stack was manufactured. When a 1kW class SOFC system was operated at $750^{\circ}C$ with city gas, it showed the power output of 1.3 kWe at 50 A. It also recuperated heat of 0.57-1.2 kWth according to the loaded current through combustion of unreacted anode off-gas. Recently, KEPRI is developing a new kW class SOFC stack and system to increase efficiency and durability at intermediate temperature.

  • PDF

원통형 고체산화물연료전지용 다공성 NI-YSZ 연료극의 Redox 사이클 특성 (Characterization of Redox Cycles of NI-YSZ Porous Anode Support for Tubular SOFCs)

  • 허연혁;박광연;이종원;이승복;임탁형;박석주;송락현;신동열
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.526-532
    • /
    • 2010
  • The anode may inevitably undergo a number of reduction.oxidation (redox) cycles during solid oxide fuel cells (SOFCs) operation. The re-oxidation of Ni to NiO causes significant mechanical stress to be developed across the anode, which may destroy the integrity of the whole cell. In this study, the redox behavior of Ni-YSZ composite was examined at $800^{\circ}C$ using various characterization techniques.

고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기 (kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System)

  • 윤상호;강인용;배규종;배중면
    • 대한기계학회논문집B
    • /
    • 제32권7호
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

고체산화물 연료전지용 예혼합 연소시스템 개발 (Development of Combustion System for Solid Oxide Fuel Cell System)

  • 조순혜;이필형;차천륜;홍성원;황상순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

KIST와 FZ-Julich SOFC간의 출력성능 비교 (Comparison of the Power Generating Characteristics of KIST- and FZ-Julich SOFCs)

  • 정화영;이상철;;김혜령;이해원;이종호
    • 한국세라믹학회지
    • /
    • 제44권12호
    • /
    • pp.703-709
    • /
    • 2007
  • We evaluate and compare the power generating characteristics of the anode supported SOFCs which have been fabricated from KIST and FZ-Julich in Germany. The performance and electrochemical property of each unit cell was characterized at the temperature range of $650-850^{\circ}C$ under same operating conditions and its microstructural property was thoroughly investigated via SEM after the performance test. According to the investigation, KIST- and FZJ SOFC showed different power generating characteristics in their temperature dependances due to their different design of electrode microstructure, especially the cathode microstructure. FZJ SOFC showed better performance at high temperature while showed lower performance at lower temperature. From the investigation about the correlation between microstructure and electrochemical property, we found that the superior performance of FZJ SOFC at high temperature was mainly due to its lower cathodic polarization resistance whereas better performance of KIST SOFC at lower temperature was mostly attributed to the lower ohmic resistance.

저온형 SOFC용 GDC 전해질 두께에 따른 Open Circuit Voltage 향상 (Improvement of Open Circuit Voltage (OCV) depending on Thickness of GDC Electrolyte of LT-SOFCs)

  • 고현준;이종진;현상훈
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.195-198
    • /
    • 2010
  • It has been considered to apply GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) for low-temperature SOFC electrolytes because it has higher ionic conductivity than YSZ at low temperature. However, open circuit voltage with using GDC ($Gd_{0.1}Ce_{0.9}O_{1-X}$) electrolyte in SOFCs, becomes lower than using YSZ (8 mol% Yttria stabilized Zirconia) electrolyte because GDC has electronic conductivity. In this work, the effect of changing GDC electrolyte thickness on the open circuit voltage has been investigated. Ni-GDC anode-supported unit cells were fabricated as follows. Mixed NiO-GDC powders were pressed and pre-sintered at $1200^{\circ}C$. And then, GDC electrolyte material was dip-coated on the anode and sintered at $1400^{\circ}C$. Finally the LSCF-GDC cathode material was screen-printed on the electrolyte and sintered at $1000^{\circ}C$. Electrolyte thickness was controlled by the number of dip-coating times. Open circuit voltage was measured depending on electrolyte thickness at $650^{\circ}C$ and found that the thicker GDC electrolyte was, the better OCV was.