DOI QR코드

DOI QR Code

Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania

전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성

  • Cho, Hae-Ran (Korea Institute of Ceramic Engineering & Technology, Energy Materials Center) ;
  • Choi, Byung-Hyun (Korea Institute of Ceramic Engineering & Technology, Energy Materials Center) ;
  • An, Yong-Tae (Korea Institute of Ceramic Engineering & Technology, Energy Materials Center) ;
  • Baeck, Sung-Hyeon (Inha University) ;
  • Roh, Kwang-Chul (Korea Institute of Ceramic Engineering & Technology, Energy Materials Center) ;
  • Park, Sun-Min (Korea Institute of Ceramic Engineering & Technology, Energy Materials Center)
  • 조해란 (한국세라믹기술원 에너지소재센터) ;
  • 최병현 (한국세라믹기술원 에너지소재센터) ;
  • 안용태 (한국세라믹기술원 에너지소재센터) ;
  • 백성현 (인하대학교) ;
  • 노광철 (한국세라믹기술원 에너지소재센터) ;
  • 박선민 (한국세라믹기술원 에너지소재센터)
  • Received : 2012.05.03
  • Published : 2012.09.25

Abstract

Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. L. Bersa and C. Compson, J. Am. Ceram. Soc. 89, 3009 (2006).
  2. R. K. Gupta, E. Y. Kim, Y. H. Kim, and C. M. Whang, Met. Mater. Int. 6, 1055 (2009).
  3. I. J. Shon, S. L. Du, I. Y. Ko, J. M. Doh, J. K. Yoon, and J. H. Park, Electron. Mater. Lett. 7, 133 (2011). https://doi.org/10.1007/s13391-011-0608-7
  4. M. Dokiya, Solid State Ionics 152, 383 (2003).
  5. S. D. kim and S. H. Hyun, J. power sources 139, 67 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.013
  6. H. Y. Tu and Y. Takeda, Solid State Ion 177, 277 (1999).
  7. B. C. H. Steele and A. Heinzel, Nature 414, 345 (2001). https://doi.org/10.1038/35104620
  8. R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki and K. Miura, J. Electrochem. Soc. 146, 2006 (1999). https://doi.org/10.1149/1.1391882
  9. T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, and Y. Takita, J. Electrochem. Soc. 147, 1332 (2000). https://doi.org/10.1149/1.1393358
  10. S. de Souza, S. J. Visco, and L. C. de Jonghe, Solid State Ionics 98, 57 (1997). https://doi.org/10.1016/S0167-2738(96)00525-5
  11. C. Wang, W. L. Worrell, S. Park, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc 148, A864 (2001). https://doi.org/10.1149/1.1382588
  12. T. Tsai, E. Perry, and S. Barnett, J. Electrochem. Soc. 144, L130 (1997). https://doi.org/10.1149/1.1837635
  13. K. W. Chour, J. Chen, and R. Xu, Thin Solid Films 304, 106 (1997). https://doi.org/10.1016/S0040-6090(97)00017-5
  14. J. V. Herle, R. Ihringer, R. V. Cavieres, L. Constantin, and O. Bucheli, J. Eur. Ceram. Soc. 21, 1855 (2001). https://doi.org/10.1016/S0955-2219(01)00130-3
  15. Y. D. Zhen, A. I. Y. Tok, S. P. Jiang, and F. Y. C. Boey, J. Power Sources 178, 69 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.113
  16. S. G. Kim, S. P. Yoon, S. W. Nam, S. H. Hyun, and S. A. Hong, J. Power Sources 110, 222 (2002). https://doi.org/10.1016/S0378-7753(02)00270-7
  17. P. V. Dollen and S. Barnett, J. Am. Ceram. Soc. 88, 3361 (2005). https://doi.org/10.1111/j.1551-2916.2005.00625.x
  18. Y. Du and N. M. Sammes, J. Power Sources 136, 66 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.028
  19. M. J. Lee, B. N. Kim, T. Y. Lim, S. K. Kim, and B. H. Choi, J. Kor. Ceram. Soc. 48, 520 (2011). https://doi.org/10.4191/kcers.2011.48.6.520
  20. M. Han, X. Tang, H. Yin, and S. Peng, J. Power Sources 165, 757 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.054
  21. Y. H. Zhang, X. Q. Huang, Z. Lu, X. D. Ge, J. H. Xu, X. S. Xin, X. Q. Sha, and W. H. Su, Solid State Ionics 177, 281 (2006). https://doi.org/10.1016/j.ssi.2005.11.008