〈기술논문〉

DOI:10.3795/KSME-B.2008.32.7.558

고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기

윤상호^{*} · 강인용^{**} · 배규종^{**} · 배중면[†] (2008년 3월 28일 접수, 2008년 4월 19일 수정, 2008년 4월 29일 심사완료)

kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System

Sangho Yoon, Inyong Kang, Gyujong Bae and Joongmyeon Bae

Key Words: Diesel(디젤), Microchannel Catalyst(마이크로채널 촉매), Autothermal Reforming(자열 개질), SOFC System(고체산화물 연료전지 시스템)

Abstract

Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and CH₄ as a fuel, because SOFCs are hot enough to allow the CH₄ steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and CH₄ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

1. 서 론

연료전지(fuel cell)는 친환경·고효율 에너지 변 환장치로 주목 받고 있다. 작동 온도에 따라 연 료전지는 고온형 연료전지와 저온형 연료전지로 나눌 수 있다. 고체산화물 연료전지(solid oxide fuel cell, SOFC)는 대표적인 고온형 연료전지로 높은 작동 온도로 인해 연료극(anode)에 공급되는 연료에 대한 유연성이 저온형 연료전지에 비해

** Chemical Engineering Department, Colorado School of Mines

크다. 저온형 연료전지인 고분자 전해질 연료전 지(polymer electrolyte fuel cell, PEMFC)의 경우에 는 연료극에 수소 이외에 일산화탄소(CO) 및 메 탄(CH4) 등과 같은 연료가 수소와 함께 공급될 경우 촉매 피독 현상으로 연료전지 운전이 어렵 다.⁽¹⁾ 하지만, SOFC의 경우에는 일산화탄소(CO) 는 물론 메탄(CH4)의 경우에도 증기(steam)가 연 료극에 연료와 함께 충분히 공급될 경우 운전이 원활하게 이루어 질 수 있다.⁽²⁾ 이러한 SOFC의 장점으로 인해 SOFC 시스템 내 개질기 연료 선 정 시 단위 질량부피 당 높은 수소 밀도를 지닌 디젤을 통한 수소 생산은 시스템 운전을 위해 효 과적인 방법이다.⁽³⁾

개질 반응에 있어서 촉매는 개질 성능을 좌우 하는 중요한 요소이다. 특히 개질기 운전에 여러

 ^{*} 책임저자, 회원, KAIST 기계공학과
 E-mail : jmbae@kaist.ac.kr
 TEL : (042)869-3045 FAX : (042)869-8207

^{*} KAIST 기계공학과

^{***} KAIST 기계공학과

가지 어려움이 있는 디젤 개질에 있어서 촉매 선 정은 무엇보다 중요하다. 이와 함께 연료전지 시 스템에 알맞은 개질기 구축을 위해서는 개질 촉 매 형상 역시 중요하다. 일반적으로 개질 반응기 촉매는 충전층 촉매(packed-bed catalyst)를 이용한 다. 충전층 촉매를 이용할 경우 촉매 제조가 간 단하다는 장점이 있다. 하지만, 개질 반응기 단위 부피 당 높은 수소 수득을 위해서는 마이크로채 널 촉매(microchannel catalyst)를 이용하는 것이 유 리하다.⁽⁴⁾

본 연구에서는 SOFC 시스템에 적용될 수 있는 kW급 디젤 자열 개질기(autothermal reformer)를 위한 연구를 수행 하였다. 우선 디젤 자열 개질 에 적합한 촉매 선정을 위한 기초 실험을 이행하 였으며, 선정된 촉매를 이용해 충전층 촉매와 마 이크로채널 촉매의 형상에 따른 디젤 자열 개질 특성을 비교해 보았다. 마지막으로 마이크로채널 촉매를 적용한 kW급 디젤 자열 개질기 운전을 시행, 그 결과를 살펴보았다.

2.실 험

2.1 디젤 자열 개질 촉매 선정과 촉매 형상에 따른 개질 특성 비교

디젤 자열 개질 촉매 선정 및 촉매 형상에 따 른 디젤 자열 개질 특성 실험을 이행하였다. 실 험을 위한 마이크로 반응기 실험 장비는 Fig. 1과 같이 구성 하였다. 디젤 자열 개질기에 공급되는 반응물들(공기, 물, 연료)은 전기로(furnace) 내에

Fig. 1 Schematic of the ATR experimental apparatus

위치한 반응기로 공급 된다. 공기는 일반 압축공 기를 사용하였으며, 물은 탈이온 과정을 거친 초 순수물(>15MQ)을 사용하였다. 연료로 공급되는 디 젤은 상용 디젤을 모사한 합성디젤(synthetic diesel, mixture of C₁₂H₂₆ andC₁₁H₁₀)을 사용하였다. 모든 기체는 MFC(mass flow controller)로 유량을 제어하였으며, 디젤과 탈이온수는 정량 공급을 위해 HPLC(high performance liquid chromatograph) 용 펌프를 이용하여 유량을 제어하였다. 탈이온 수는 외부 기화기를 통하여 모두 증기 상태로 전 환한 후 운반가스(carrier gas)인 질소와 함께 반응 기 내로 공급되었다. 개질생성 가스는 제습제를 통해 물 제거 후 TCD(thermal conductivity detector)와 FID(flame ionization detector)가 장착된 Agilent 사의 6890 GC(gas chromatograph)를 이용 하여 분석하였다.

디젤 자열 개질 촉매 선정을 위한 실험 반응 조건은 촉매 2 ml을 기준으로, GHSV(gas hourly space velocity) = 5,000(/h), H₂O/C = 1.25, O₂/C = 0.5로 고정한 상태에서 온도에 따른 개질 특성을 살펴보았다. 본 실험에서 사용된 반응 조건 중 GHSV는 각 반응기 내에 탑재되어 있는 촉매를 공급되는 전체유량으로 나눈 값으로 식.(1)과 같 이 정의하였다.

GHSV(gas hourly space velocity)(/h) = (Total reactant flow rate)/(Catalyst volume) (1)

또한 촉매 형상에 따른 개질 특성 비교 실험에 서는 H₂O/C = 1.25, O₂/C = 0.5로 고정된 반응 조 건에서 GHSV 변화에 따른 촉매 형상 별 개질 특성을 살펴보았다. 모든 자열 개질 반응 조건에 따른 실험들은 전기로(furnace) 내 반응기 온도를 800℃로 일정하게 유지한 상태로 이행하였다. 기 초 실험을 바탕으로 선정된 금속망 마이크로채널 촉매를 이용해 디젤 자열 개질기 장기성능을 확 인하였다. 반응 조건은 촉매 기초 특성 비교 실 험과 달리 디젤 자열 개질기의 안정적인 장기 성 능 확보를 위해 고유량 영역인 GHSV = 30,000(h), H₂O/C = 2, O₂/C = 0.8인 반응 조건으 로 장기 특성을 살펴보았다.⁽⁵⁾

마이크로채널 촉매 지지체인 세라믹 모노리스 와 금속망(Inconnel 625)은 촉매 특성 실험을 통해 선정된 촉매 파우더를 안정제와 함께 현탁되어

Fig. 2 Schematic of kW-class Diesel Autothermal Reformer for SOFC System

Table I Microchannel propert	ies
-------------------------------------	-----

	Mesh	Monolith
Material	Inconel 625	2MgO/5SiO ₂ /
		$2Al_2O_3$
Thermal conductivity	9.8	0.23
(W/m · K)	2.0	0.25
Geometry	Wire diameter	Cell density
	: 0.1 mm	: 900 cpsi

있는 슬러리(slurry)에 습식 코팅한 후 800℃로 소 결 및 하소 과정을 거쳐 마이크로채널 촉매를 제 작하였다.⁽⁶⁾ 촉매 지지층으로 쓰여진 금속망과 세 라믹 모노리스의 사양은 table 1과 같다.

개질 성능 비교를 위한 개질 효율(reforming efficiency)은 식.(2)와 같이 정의하였다.⁽⁷⁾

개질 효율(reforming efficiency(%)) = (LHV of $H_2 + CO$)/(LHV of Diesel) × 100 (2)

2.2 마이크로채널 촉매를 이용한 kW급 디젤 자열 개질기 운전

마이크로 반응기에서 촉매 형상에 따른 디젤 자열 개질 특성을 파악을 통해 kW급 디젤 자열 개질기 운전을 위한 촉매로 금속망 마이크로채널 촉매(mesh-typed microchannel catalyst)를 선정하였 다. 금속망 마이크로채널을 62 ml의 부피를 갖게 제작하여 반응기에 탑재하였다. 반응 조건은 GHSV = 30,000(/h)에 상용디젤(GS-Caltex)을 이용 하여 분당 3.64 ml 씩 공급하였으며, 물은 분당 9

Fig. 3 Characteristic comparison of substrate vs. reforming temperature (hydrogen yield), GHSV = 5,000/h, $O_2/C = 0.5$, $H_2O/C = 1.25$

ml, 공기는 분당 20.5 1 씩 공급하였다. 액체 반응 물들은 RHB 펌프(Fluid Metering Inc.)를 이용하여 반응기 내에 공급하였으며, 공기는 MFC로 유량 을 제어하였다.

반응기 구성은 Fig. 2와 같다. 공급되는 물은 반 응기 외벽에서 전달되는 열과 전기로에서 전해지 는 열로 기화되어 수증기 상태로 반응기에 공급된 다. 선행연구에서 ASPEN HYSYS[™] 해석을 통해 SOFC 시스템 구성 중 핫박스 온도가 350℃로 유 지됨을 확인 하였다.⁽⁸⁾ 이를 바탕으로 반응기 온도 를 350℃로 유지하기 위해 전기로를 이용하였다.

kW급 디젤 자열 개질기 초기 시동 시 생성되는 개질생성 가스는 FT-IR(Fourier transform-infrared spectrometers, FTPA2000, CIC Photonics, Inc)을 통해 분석 하였으며, 개질기의 안정적인 운전을 확인한 후에는 GC를 통해 생성물들을 분석 하였다.

3. 결과 및 토론

3.1 디젤 자열 개질 촉매 선정

개질 촉매는 개질기 성능을 크게 좌우한다. 높 은 활성과 수소 선택성(selectivity)을 갖는 촉매 선정은 개질 반응기 제작에 있어 선행되어야 한 다. 개질촉매는 일반적으로 담지체(substrate)와 금 속 촉매(metal catalyst)로 나눌 수 있다. 일반적으 로 담지체는 금속 촉매를 효과적으로 분산시켜주 는 역할을 하며, 비활성 물질인 Al₂O₃가 널리 알

Fig. 4 Characteristic comparison of metal catalyst vs. reforming temperature (hydrogen yield), GHSV = 5,000/h, $O_2/C = 0.5$, $H_2O/C = 1.25$

려진 담지체이다. Al₂O₃는 금속 촉매의 효과적인 담지를 위해 넓은 표면적을 제공한다. 하지만 담 지체의 역할로 금속 촉매의 분산과 함께 담지체 자체의 활성에 대한 중요성도 대두되고 있다. D. Duprez는 금속 촉매의 활성 보다 담지체의 활성 이 더 중요하다고 피력한 바 있다.⁽⁹⁾

본 논문에서는 일반적으로 잘 알려져 있는 Al₂O₃ 와 대비해 높은 활성을 지닌 담지체를 선정하기 위 한 실험을 이행하였으며, 그 결과는 Fig. 3과 같다. 실험을 위한 담지체는 모두 충전층 형태로 반응기 에 탑재하여 개질 성능을 확인하였다. Fig. 3에서와 같이 Al₂O₃를 촉매로 이용한 개질 실험 결과 촉매 가 비어 있는 빈 반응기(blank reactor)의 개질 특성 과 동일한 것을 알 수 있었으며, Al₂O₃의 경우 금속 촉매가 담지 되어 있지 않을 경우 비활성 물질임을 확인할 수 있었다. 이에 반해 CGO(gadolinium-doped ceria) 담지체의 경우에는 담지체 자체가 활성을 지 니고 있어 각 온도에 따라 개질 특성이 나타나는 것을 확인할 수 있었다. 이와 함께 금속 촉매인 Pt 촉매를 Al2O3와 CGO 담지체에 0.5wt% 씩 담지한 경우에도 CGO-Pt(0.5wt%) 촉매가 높은 수소 수득율 을 보임을 확인할 수 있었다. 반응기 온도 900℃에 서 CGO-Pt 촉매와 Al₂O₃-Pt 촉매의 수소 수득율이 유사한 것은 촉매의 활성도가 반응기 온도의 영향 을 지배적으로 받았기 때문이다.

CGO 담지체의 우수함을 확인한 후 Pt 금속 촉매의 담지 양을 0.5, 1.0, 2.0wt%로 증가시켜가며

Fig. 5 Reforming efficiency and product distribution vs. GHSV with packed-bed catalyst, synthetic diesel, Temp. = 800 °C, O_2/C = 0.5, H_2O/C = 1.25

개질 특성을 비교해 보았다. 비교적 저온인 60 0℃ 구간에서는 담지된 금속 촉매 양과 개질 성 능이 서로 비례관계에 있었지만, 전 온도 영역에 서 유사한 개질 특성을 보이는 것을 Fig. 4를 통 해 확인할 수 있었다.

즉 개질 성능 향상에 있어서 금속 촉매 Pt의 담 지 양에 대비해 담지체가 지배적인 역할을 수행 한다고 설명할 수 있다.

3.2 충전층 촉매와 마이크로채널 촉매의 디젤 자열 개질 특성 비교

디젤 자열 개질 촉매로 우수한 특성을 보인 CGO-Pt(0.5wt%) 촉매를 이용해 충전층 촉매와 마 이크로채널 촉매의 디젤 자열 개질 특성을 살펴 보았다. Fig. 5 ~ 7 과 같이 반응물들의 공급 유 량 중 저유량 범위인 GHSV = 5,000(/h)인 영역에 서는 충전층 촉매와 모노리스 촉매의 특성이 뛰 어난 것을 확인할 수 있었다. 하지만 반응물 공 급이 GHSV = 20,000(/h) 이상인 고유량 영역에서 는 충전층 촉매의 경우 개질 특성이 급격히 저감 되는 것을 살펴볼 수 있었으며, 마이크로채널 촉 매의 경우에는 충전층 촉매에 비해 개질 성능 저 감비가 작은 것을 알 수 있었다. 금속망 마이크 로채널 촉매의 경우에는 반응물들의 공급 유량이 저유량 영역인 경우에 개질 성능이 다른 촉매들 에 대비해 비교적 떨어지지만, 고유량 영역에서 개질 성능 저감이 작으며, 충전층 촉매와 모노리

Fig. 6 Reforming efficiency and product distribution vs. GHSV with monolith-typed microchannel catalyst, synthetic diesel, Temp. = 800 °C, $O_2/C = 0.5$, $H_2O/C = 1.25$

Fig. 7 Reforming efficiency and product distribution vs. GHSV with mesh-typed microchannel catalyst, synthetic diesel, Temp. = 800 °C, $O_2/C = 0.5$, $H_2O/C = 1.25$

스 마이크로채널 촉매에 비교해서 높은 개질효율 을 보인다.

이러한 현상은 외부 물질전달 현상과 촉매층의 열전달 현상과 관련이 있다. 외부 물질전달 현상 은 촉매 알갱이의 겉 표면으로 반응물이 전달되 는 현상이다. 저유량 영역에서는 촉매와 반응물 들 사이의 반응속도가 충분히 빨라 반응물의 흐 름이 촉매 알갱이의 겉 표면 사이의 외부 물질전 달이 개질 성능에 영향을 줄 수 있다. 이 경우 단위 부피 당 표면적이 넓은 충전층 촉매가 마이

Fig. 8 Reforming efficiency and product distributions. operating time with mesh-type microchannel catalyst, synthetic diesel, Temp. = 800 °C, GHSV = 30,000/h, $O_2/C = 0.8$, $H_2O/C = 2$

크로채널 촉매에 대비해 유리하다. 하지만, 압력 강하에 따른 반응물들의 동종 반응과 촉매층의 재배열 현상으로 인해 고유량 영역에서 충전층 촉매의 개질 성능은 크게 저감된다.⁽⁶⁾

또한, 금속망 마이크로채널 개질기의 개질 성능 이 유량 증가와 함께 일시적으로 상승하는 현상 과 동시에 고유량 영역에서 금속망 마이크로채널 촉매가 향상된 개질 특성을 보이는 것은 마이크 로 반응기 내 촉매의 온도 분포와 관련이 깊다.

Table 1에서와 같이 촉매 지지체인 금속망의 경 우 열전달율이 세라믹으로 구성된 모노리스 마이 크로채널 촉매에 대비해 매우 크다. 따라서 금속 망 마이크로 채널 촉매의 경우 유량 증가에 따른 열량 상승효과를 촉매 층 전반에 효과적으로 전 달하여 개질 성능이 상승한 것이다. 전기로에서 운전되는 마이크로 반응기와 달리 열이 외부로부 터 공급되지 않는 kW급 자열 개질기 운전의 경 우에는 수증기 반응에 대비해 반응속도가 상대적 으로 빠른 산소의 산화 반응에 의해 발생되는 열 을 바탕으로 개질기 온도가 결정되어 진다. 따라 서 개질 촉매의 열전달율과 개질 성능은 밀접한 관련이 있으며, 금속망을 이용한 마이크로채널 촉매의 경우 촉매층 전반에 대해 효과적인 열전 달 효과를 예상할 수 있다.

이 같은 기초 특성 실험들을 바탕으로 마이크로 채널 촉매 중 고유량 영역에서 높은 개질 효율을 보인 금속망 마이크로채널 촉매를 이용해 GHSV = 30,000(/h), H₂O/C = 2, O₂/C = 0.8인 반응 조건으로 디젤 자열 개질기 장기 특성을 살펴보았다. 촉매는 CGO-Pt(2.0wt%)를 이용하였으며, 반응 조건은 선행 연구에서와 같이 개질기의 장기 성능을 보장하기 위해 H₂O/C = 2, O₂/C = 0.8로 선정하였다.⁽⁵⁾

Fig. 8에서 개질생성가스 농도와 함께 개질 효율 을 개질기 운전 시간에 따라 살펴 볼 수 있다. 그 결과 개질 기초 특성 파악을 위해 선정한 반응 조 건인 H₂O/C = 1.25, O₂/C = 0.5의 마이크로 반응기 에 대비해 개질 효율이 감소하는 것을 확인할 수 있었다. 이는 개질기의 장기 성능 확보를 위해 공기 의 양과 수증기 양을 증가시켰기 때문이다. 선행 연 구를 통해 디젤 자열 개질기 반응 중 발생하는 탄 소침적 현상을 억제하기 위해서는 H2O/C와 O2/C를 증대시켜야 함을 알 수 있다.⁽⁵⁾ 이처럼 반응 조건 중 O2/C의 증가는 반응물들 중 디젤과 산소의 반응 이 완전 산화 반응에 가까워짐에 따라 개질생성 가 스들 중 이산화탄소의 양이 일산화탄소의 양 보다 증가한다. 하지만, 80 여 시간 동안의 반응기 운전 중 개질 성능이 유지되는 것을 확인할 수 있었으며. 이를 통해 금속망 마이크로채널 촉매를 이용한 kW 급 개질기 운전이 가능함을 확인할 수 있었다.

3.3 마이크로채널을 이용한 kW급 디젤 자열 개질기 운전

앞서 살펴본 마이크로채널 촉매 디젤 자열 개 질 특성 파악을 바탕으로 금속망 마이크로채널 촉매를 이용한 kW급 디젤 자열 개질기 운전을 이행하였다. 촉매는 CGO-Pt(2.0wt%)를 이용하였 으며 Fig. 9-(a)와 같이 준비하였다.

반응기 운전 조건은 앞서 마이크로 반응기에서 장기성능을 확인한 GHSV = 30,000(/h), H₂O/C = 2, O₂/C = 0.8로 선정하였다. Fig. 10과 같이 반응 조건에 맞는 반응물들을 공급하였으며, 반응물 공급과 동시에 개질생성 가스들 중 수소, 일산화 탄소 및 이산화탄소의 농도가 증가하는 것을 FT-IR로 살펴 볼 수 있었다. 하지만, 시동 시간 40여 분 후 수소 수득율이 감소되는 것을 확인할 수 있었다. 이러한 현상은 반응기 내 탄소침적으 로 인해 반응물들의 반응이 활발히 일어나지 못 하기 때문이라고 판단하였으며, 탄소침적 현상 억제와 식. (3)과 같이 반응기 내 침적되는 탄소 를 제거하기 위해⁽¹⁰⁾ 물의 공급 양을 분당 8 ml에 서 9 ml로 증가시켰다. 그 결과 수소 생성 양이 증가하는 것을 확인할 수 있었다.

$$C + H_2 O = C O + H_2$$
 (3)

Fig. 9 Mesh-typed microchannel catalyst (a)before (b) aged

Fig. 10 kW-class mesh-typed microchannel catalyst diesel ATR stat-up product distribution vs. time

개질 특성이 일정해 지는 것을 확인한 후 GC를 통해 시간에 따른 개질생성 가스를 분석하였다. 개 질기 운전 중 생성되는 수소 및 일산화탄소의 열 량 합은 약 900W이며, 본 반응기를 통해 900W급 SOFC 운전이 가능함을 확인할 수 있었다. 하지만 개질기의 운전 시간이 경과됨에 따라 수소 및 일 산화탄소 수득율이 저감되었으며, 개질 효율 역시 감소되었다. 이는 Fig. 11을 통해 확인할 수 있다. 수소 및 일산화탄소 수득율 저감과 동시에 이산화 탄소 및 탄소침적 현상을 대변해 줄 수 있는 대표 적인 탄소전구체인 에틸렌⁽¹¹⁾ 생성 양 증대가 함께 나타났다. 이를 통해 디젤 자열 개질 반응이 지속 됨에 따라 반응기 내 탄소침적 현상이 발생하였으 며, 탄소침적 현상으로 인해 개질 촉매의 활성점이 줄어들어 촉매 선택성이 감소되었다고 판단할

Fig. 11 kW-class mesh-typed microchannel catalyst diesel ATR product distribution vs. operating time, commercial diesel, Temp. = 350 °C, GHSV = 30,000/h, $O_2/C = 0.8$, $H_2O/C = 2$

수 있다. 개질 촉매의 활성점이 감소함에 따라 산소와 디젤의 반응 속도에 비해 반응 속도가 느 린 수증기와 반응물들의 반응이 활발히 일어나지 못해 수소 수득율 감소와 동시에 이산화탄소의 생성 양이 증대된다. 또한 수증기와 반응물들의 반응이 활발히 일어나지 못함에 따라 탄소침적 현상은 더욱 급격히 발생되어 개질 성능 저감비 가 커지는 것을 개질 특성 결과를 토대로 확인할 수 있었다. 실험 후 개질 촉매를 살펴 본 결과 Fig. 9-(b)와 같으며, 고온의 개질 반응 후 촉매 전단부가 크게 손상된 것을 확인할 수 있었다. 이는 마이크로 반응기에서는 볼 수 없었던 현상 이다. 이러한 현상은 개질 반응기 용량이 커짐에 따라 마이크로 반응기와 동일한 개질 반응 조건 에서도 kW급 개질기의 경우에는 공급되는 반응 물 및 생성물 양 증가에 따라 반응기 내에서 생 성되는 총열량이 마이크로 반응기 보다 커지게 된다. 따라서 산소와 연료의 산화 반응이 격렬히 일어나는 반응기 전단부의 온도가 급격히 상승하 게 되어 촉매 손상이 발생하게 되는 것이다. 또 한 고유량에서 반응물들(디젤, 물, 공기)의 혼합이 잘 이루어 지지 못해 반응기 내는 상대적으로 연 료 과다(fuel-rich) 영역과 연료 희박(fuel-lean) 영 역이 공존한다. 이 경우 선정된 반응 조건인 O2/C가 반응기 내부에서 불균일하게 분포하며, 특히 O2/C가 높은 부분에서는 열점(hot spot)이 발 생하여, 촉매는 손상을 입는다. 반응기가 대용량 일수록 열점에서 발생되는 열량이 커져 촉매 손 상은 더욱 심각할 것이며, 이로 인해 연료 희박 영역에서의 촉매 손상으로 인한 활성점 감소가 발생하게 되며, 이는 탄소 침적 현상으로 연결되 어 개질 성능을 저감 시킨다.

향후에는 더욱 안정적인 kW급 디젤 개질기 운 전을 위해 반응물들의 혼합 문제 해결 및 적절한 개질 반응 온도 유지를 위한 반응 조건 선정을 통해 반응기 운전이 시행되어야 할 것이다.

4. 결 론

(1) CGO 담지체를 이용한 경우 널리 이용되는 Al₂O₃ 담지체에 대비해 향상된 디젤 자열 개질 성능을 확보할 수 있었다.

(2) 촉매 형상에 따른 개질 특성 파악 중 시스템 소형화를 위한 고유량 영역의 운전을 위해서

는 마이크로채널 촉매가 적합함을 확인할 수 있 었다. 특히 다른 촉매들(충전충 촉매, 모노리스 마이크로채널 촉매)에 비해 열전달율이 높아 고 유량에서 금속망 마이크로채널 촉매가 높은 개질 효율을 보이는 것을 확인할 수 있었다.

(3) 금속망 마이크로채널 촉매를 이용하여 SOFC 시스템 용 1 kW급 개질기 운전을 이행하 였으며, 운전 초기 개질효율은 55% 가량 확보할 수 있었다. 하지만 kW급 디젤 자열개질기 운전 시 마이크로 반응기운전과 달리 반응기 내 온도 제어 및 반응물 혼합의 어려움으로 인해 개질 성 능이 마이크로 반응기에 비해 저감되는 것을 확 인할 수 있었으며, 추후 반응물들의 혼합문제와 적절한 반응기 온도 유지를 위한 연구가 진행되 어야 할 것이다.

후 기

이 연구는 지식경제부 지원의 "5kW。 열병합 SOFC 발전시스템 개발"과제와 에너지자원인력 양성사업 일부로 수행되었습니다. 또한 교육인적 자원부 BK21 과제의 지원으로 수행되었습니다. 연구비 지원에 감사드립니다.

참고문헌

- (1) James Larmine and Andrew Dicks, 2003, "Fuel Cell Systems Explained, Second Edition," *Wiley*, New York.
- (2) Bae, J. M., Lim, S. K., Jee, H. J., Kim, J.H, Yoo, Y. S., and Lee, T. H., 2007, "Small Stack Performance of Intermediate Temperature-operating Solid Oxide Fuel Cells using Stainless Steel Interconnects and Anode-supported Single Cell," *J. Power Sources*, Vol. 172, pp. 100~107.
- (3) Kopasz, J. P., Applegate, D., Miller, L., Liao
 H. K., and Ahmed, S., 2005, "Unraveling the Maze: Understanding of Diesel Reforming Through the Use of Simplified Fuel Blends," *Int. J.*

Hydrogen Energy, Vol. 30, pp. 1243~1250.

- (4) Heck, R. M., Gulati, S., and Farrauto, R. J., 2001, "The Application of Monoliths for Gas Phase Catalytic Reactions," *Chemical Engineering Journal*, Vol. 82, pp. 149~156.
- (5) Yoon, S. H., Kang, I. Y., Bae, G. J. and Bae, J. M., 2007, "Effect of the Molar H₂O/C and the Molar O₂/C Ratio on Long-term Performance of Diesel Autothermal Reformer for Solid Oxide Fuel Cell," *J. the Korean Electrochemical Soc.*, Vol. 10, No. 2, pp. 110~115.
- (6) Bae, G. J., and Bae, J. M., 2007, "Study on Reforming Performance as a Function of Catalyst Geometry," *Proceeding of the KSME 2007 Fall Annual Meeting.*, pp. 2353~2357.
- (7) Ahmed, S. and Krumpelt, M., 2001, "Hydrogen from Hydrocarbon Fuels for Fuel Cell," *International J. Hydrogen Energy*, Vol. 26, pp. 291~ 301.
- (8) Kang, I. Y., Yoon, S. H., Bae, G. J., Kim, J. H., Baek, S. W., Bae, J. M. and Yoo, Y. S., 2008, "A Preparatory Test for 1kWe Diesel-Powered SOFC Systems," *Proceeding of 6th fuel cell science, engineering & technology conference,* Submitted.
- (9) Duprez, D., 2006, "Study of Surface Reaction Mechanisms by ¹⁶O/¹⁸O and H/D Isotopic Exchange," *Catalysis Today*, Vol. 112, pp. 17~22
- (10) Tatsuya Takeguchia, Yukimune Kania, Tatsuya Yanoa, Ryuji Kikuchia, Koichi Eguchia, Keigo Tsujimotob, Yoshitaka Uchidac, Akira Uenoc, Koiji Omoshikic and Masanobu Aizawa, 2002, "Study on Steam Reforming of CH₄ and C₂ Hydrocarbons and Carbon Deposition on Ni-YSZ Cermets," *J. of Power Sources*, Vol. 112, pp. 588~595.
- (11) Rostrup-Nielsen, J. R., Dybkjaer, I. and Christensen, T. S., 1998, "Steam Reforming of Liquid Hydroccarbons," *Stud. Surf. Sci. Catal.*, Vol. 113, pp. 81~96.