Characterization of Redox Cycles of NI-YSZ Porous Anode Support for Tubular SOFCs

원통형 고체산화물연료전지용 다공성 NI-YSZ 연료극의 Redox 사이클 특성

  • Heo, Yeon-Hyuk (Fuel Cell Research Center, Korea Institute of Energy Research (KIER)) ;
  • Park, Kwang-Yeon (Fuel Cell Research Center, Korea Institute of Energy Research (KIER)) ;
  • Lee, Jong-Won (Fuel Cell Research Center, Korea Institute of Energy Research (KIER)) ;
  • Lee, Seung-Bok (Fuel Cell Research Center, Korea Institute of Energy Research (KIER)) ;
  • Lim, Tak-Hyoung (Fuel Cell Research Center, Korea Institute of Energy Research (KIER)) ;
  • Park, Seok-Joo (Fuel Cell Research Center, Korea Institute of Energy Research (KIER)) ;
  • Song, Rak-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research (KIER)) ;
  • Shin, Dong-Ryul (Fuel Cell Research Center, Korea Institute of Energy Research (KIER))
  • 허연혁 (한국에너지기술연구원 연료전지연구단) ;
  • 박광연 (한국에너지기술연구원 연료전지연구단) ;
  • 이종원 (한국에너지기술연구원 연료전지연구단) ;
  • 이승복 (한국에너지기술연구원 연료전지연구단) ;
  • 임탁형 (한국에너지기술연구원 연료전지연구단) ;
  • 박석주 (한국에너지기술연구원 연료전지연구단) ;
  • 송락현 (한국에너지기술연구원 연료전지연구단) ;
  • 신동열 (한국에너지기술연구원 연료전지연구단)
  • Received : 2010.09.03
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

The anode may inevitably undergo a number of reduction.oxidation (redox) cycles during solid oxide fuel cells (SOFCs) operation. The re-oxidation of Ni to NiO causes significant mechanical stress to be developed across the anode, which may destroy the integrity of the whole cell. In this study, the redox behavior of Ni-YSZ composite was examined at $800^{\circ}C$ using various characterization techniques.

Keywords

References

  1. T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, and M. Awano, "Impact of anode microstructure on solid oxide fuel cells", Science, Vol. 325, 2009, pp. 852-855. https://doi.org/10.1126/science.1176404
  2. A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. Mcevoy, M. Mogensen, S. C. Singhal, and J. Vohs, "Advanced anodes for high-temperature fuel cells", Nature mater., Vol. 3, 2004, pp. 17-27. https://doi.org/10.1038/nmat1040
  3. S. P. Jiang and S. H. Shan, "A review of anode materials development in solid oxide fel cells", J. Mater. Sci., Vol. 39, 2004, pp. 4405-4439. https://doi.org/10.1023/B:JMSC.0000034135.52164.6b
  4. 송락현, 이길용, 신동열, "평관형 고체 산화물 연료전지의 연료극 지지체 NiO/YSZ의 환원 및 재산화 거동 특성", 한국수소 및 신에너지학회 논문집, Vol. 17, No. 1, 2006, pp. 82-89.
  5. T. Klemenso, C. Chung, P. H. Larsen, and M. Mogensen, "The mechanism behind redox instability of anodes in high-temperature SOFCs", J. Electrochem. Soc. V.152, 2005, pp. A2186-2192. https://doi.org/10.1149/1.2048228
  6. D. Sarantaridis and A. Atkinson, "Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review", Fuel Cells, Vol. 7, No. 3, 2007, pp. 246-258. https://doi.org/10.1002/fuce.200600028
  7. H. J. Son, R. H. Song, T. H. Lim, S. B. Lee, S. H. Kim, and D. R. Shin, "Effect of fabrication parameters on coating properties on tubular solid oxide fuel cell electrolyte prepared by vacuum slurry coating", J. Power Sources, Vol. 195, 2010, pp. 1779-1785. https://doi.org/10.1016/j.jpowsour.2009.10.054
  8. R. H. Song, D. R. Shin, E. Y. Kim, and H. Yokokawa, "electrode-supported tubular solid oxide fuel cell and method of manufacturing the same", U.S. Patent 6, 436, 565, B1, 2002.
  9. S. B. Lee, T. H. Lim, R. H. Song, D. R. Shin, and S. K. Dong, "Development of a 700W anode-supported micro-tubular SOFC stack for APU applications", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 2330-2336. https://doi.org/10.1016/j.ijhydene.2008.02.034
  10. M. Ettler, H. Timmermann, J. Malzbender, A. Weber, and N. H. Menzler, "Durability of Ni anodes during reoxidation cycles", J. Power Sources, Vol. 195, 2010, pp. 5452-5467. https://doi.org/10.1016/j.jpowsour.2010.03.049
  11. C. M. Dikwal, W. Bujalski, K. Kendall, "Characterization of the electrochemical performance of micro-tubular SOFC in partial reduction and oxidation conditions", J. Power Sources, Vol. 181, 2008, pp. 167-173.
  12. J. Malzbender, E. Wessel, and R. W. Steinbrech, "Reduction and re-oxidation of anodes for solid oxide fuel cells", Solid State Ionics, Vol. 176, 2005, pp. 2201-2203. https://doi.org/10.1016/j.ssi.2005.06.014
  13. D. Simwonis, F. Tietz, and D. Stover, "Nickel coarsening in annealed Ni/8YSZ anode substrates for soli oxide fuel cells", Solid State Ionics, Vol. 132, 2000, pp. 241-251. https://doi.org/10.1016/S0167-2738(00)00650-0
  14. Y.-H. Heo, et. al., unpublished results.
  15. K. S. Lee, S. Lee, J. H. Yu, D. W. Seo, and S. K. Woo, "Improvement of the stability of NiO-YSZ anode material for solid oxide fuel cell", J. Solid State Electrochem., Vol. 11, 2007, pp. 1295-1301. https://doi.org/10.1007/s10008-007-0290-8
  16. C. Jin, J. Liu, L. Li, and Y. Bai, "Electrochemical properties analysis of tubular NiO-YSZ anode-supported SOFCs fabricated by the phaseinversion method", J. Membrane Science, Vol. 341, 2009, pp. 233-237. https://doi.org/10.1016/j.memsci.2009.06.012
  17. C. Yang, C. Jin, and F. Chen, "Micro-tubular solid oxide fuel cells fabricated by phase-inversion method", Electrochem. Communications, Vol. 12, 2010 pp. 657-660. https://doi.org/10.1016/j.elecom.2010.02.024
  18. T. Suzuki, Y. Funahashi, Z, Hasan, T. Yamaguchi, Y. Fujishiro, and M. Awano M, "Fabrication of needle-type micro SOFCs for micro power devices", Electrochem. Communications, Vol. 10, 2008, pp. 1563-1566. https://doi.org/10.1016/j.elecom.2008.08.016