DOI QR코드

DOI QR Code

Fabrication of Sm0.5Sr0.5CoO3 cathode films for intermediate temperature SOFCs by electrostatic spray deposition

정전분무증착법에 의한 중온형 고체산화물 연료전지를 위한 Sm0.5Sr0.5CoO3 양극막의 제조

  • Park, In-Yu (Division of Materials Science & Engineering, Hanyang University) ;
  • Im, Jong-Mo (Division of Materials Science & Engineering, Hanyang University) ;
  • Jung, Yeong-Geul (Division of Materials Science & Engineering, Hanyang University) ;
  • Shin, Dong-Wook (Division of Materials Science & Engineering, Hanyang University)
  • 박인유 (한양대학교 신소재공학과) ;
  • 임종모 (한양대학교 신소재공학과) ;
  • 정영글 (한양대학교 신소재공학과) ;
  • 신동욱 (한양대학교 신소재공학과)
  • Received : 2010.02.17
  • Accepted : 2010.04.02
  • Published : 2010.04.30

Abstract

The microstructural change of the $Sm_{0.5}Sr_{0.5}CoO_3$ (SSC) electrode for a cathode material of solid oxdie fuel cells (SOFCs) deposited by the electrostatic spray deposition (ESD) technique was characterized. Samarium chloride hexahydrate $(SmCl_3{\cdot}6H_2O)$, strontium chloride hexahydrate $(SrCl_2{\cdot}gH_2O)$, cobalt nitrate hexahydrate $(Co(No_3)_2{\cdot}6H_2O)$ as starting materials and methyl alcohol as solvent were used to make precursor solution. The suitable porous SSC films for a cathode of SOFCs were deposited on Si substrate and it is observed that the microstructure was strongly dependent on processing parameters such as deposition time, substrate temperature, and applied voltage. Scanning Electron Microscope (SEM) and X-ray Diffractometer (XRD) measurement were used to investigate the microstructure and crystallinity of the SSC films. The ESD technique is shown to be an efficient method in which the SOFCs' cathode film can be fabricated with the desired phases and microstructure.

정전분무증착 기술에 의해 증착된 고체산화물 연료전지(SOFC) 양극재료인 SSC 양극막의 미세구조적 변화에 대해 연구하였다. Samarium chloride hexahydrate$(SmCl_3{\cdot}6H_2O)$, strontium chloride hexahydrate$(Co(No_3)_2{\cdot}6H_2O)$, cobalt nitrate hexahydrate$(Co(No_3)_2{\cdot}6H_2O)$의 출발 물질과 용매로써 메탄올이 전구체 용액을 제조하는데 사용되었다. SOFC의 양극을 위해 적합한 다공성의 SSC 막을 제조하였으며, 그 미세구조가 증착시간, 기판온도, 인가전압 등과 같은 공정변수들에 의존한다는 것을 관찰하였다. 주사전자현미경과 X-ray 회절 패턴이 미세구조와 결정성 분석을 위해 사용되었다. 본 연구를 통해, ESD 기술이 요구하는 상의 합성과 다공성의 미세구조를 갖는 SOFC의 양극막을 제조하는데 효과적인 방법임을 입증하였다.

Keywords

References

  1. S.C. Singhal, "Advances in solid oxide fuel cell", Solid State Ionics 135 (2000) 305. https://doi.org/10.1016/S0167-2738(00)00452-5
  2. K.L. Choy, S. Charojrochkul and B.C.H. Steele, "Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique", Solid State Ionics 96 (1997) 49. https://doi.org/10.1016/S0167-2738(97)00013-1
  3. R. Doshi, VL. Richards, J.D. Carter, X. Wang and M. Krumpelt, "Development of solid-oxide fuel cells that operate at $500^{o}C$", J. Electrochem. Soc. 146 (1999) 1273. https://doi.org/10.1149/1.1391758
  4. E. Maguire, B. Gharbage, F.M.B. Marques and J.A. Labrincha, "Cathode materials for intermediate temperature SOFCs", Solid State Ionics 127 (2000) 329. https://doi.org/10.1016/S0167-2738(99)00286-6
  5. V. Dusastre and J.A. Kilner, "Optimisation of composite cathodes for intermediate temperature SOFC applications", Solid State Ionics 126 (2000) 163.
  6. C.R. Xia, W. Rauch, F.L. Chen and M.L. Liu, "$Sm_{0.5}Sr_{0.5}CoO_{3}$ cathodes for low-temperature SOFCs", Solid State Ionics 149 (2002) 11. https://doi.org/10.1016/S0167-2738(02)00131-5
  7. Z. Tang, Y. Xie, H. Hawthorne and D. Ghosh, "Sol-gel processing of $Sr_{0.5}Sm_{0.5}CoO_{3}$ film", J. Power Sources 157 (2006) 385. https://doi.org/10.1016/j.jpowsour.2005.07.041
  8. S. Zha, W. Rauch and M. Liu, "$Ni-Ce_{0.9}Gd_{0.1}O_{1.95}$ anode for GDC electrolyte-based low-temperature SOFCs", Solid State Ionics. 166 (2004) 241. https://doi.org/10.1016/j.ssi.2003.11.012
  9. W. Wang and M. Mogensen, "High-performance lanthanum-ferrite-based cathode for SOFC", Solid State Ionics 176 (2005) 457. https://doi.org/10.1016/j.ssi.2004.09.007
  10. X. Zhang, M. Robertson and S. Yick, "$Sm_{0.5}Sr_{0.5}CoO_{3}+Sm_{0.2}Ce_{0.8}O_{1.9}$ composite cathode for cermet supported thin $Sm_{0.2}Ce_{0.8}O_{1.9}$ electrolyte SOFC operating below $600^{o}C$", J. Power Sources 160 (2006) 1211. https://doi.org/10.1016/j.jpowsour.2006.03.035
  11. T. Ishihara and M. Honda, "Intermediate temperature solid oxide fuel cells using a new $LaGaO_{3}$ based oxide ion conductor", J. Electrochem. Soc. 145 (1998) 3177. https://doi.org/10.1149/1.1838783
  12. Y. Liu, S. Zha and M. Liu, "Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD)", Adv. Mater. 16 (2004) 256. https://doi.org/10.1002/adma.200305767
  13. J.M. Im, I.Y. Park, S.E. Jang and D.W. Shin, "Fabrication of porous lanthanum strontium manganite films by electrostatic spray deposition", Met. Mater. Int. 15 (2009) 1. https://doi.org/10.1007/s12540-009-0001-3
  14. C. Chen, E.M. Kelder and J. Schoonman, "Morphology control of thin $LiCoO_{2}$ films fabricated using the electrostatic spray deposition (ESD) technique", J. Mater. Chem. 6 (1996) 765. https://doi.org/10.1039/jm9960600765
  15. A.M. Ganan-Calvo, J. Davila and A. Barrero, "Current and droplet size in the electrospraying of liquids. Scaling laws", J. Aerosol Sci. 28 (1997) 249. https://doi.org/10.1016/S0021-8502(96)00433-8
  16. D. Fotiadis, Y. Liang, S. Filipek and K. Palczewski, "Rayleigh jets from levitated microdroplets", Nature 421 (2003) 128. https://doi.org/10.1038/421128a

Cited by

  1. ) vol.22, pp.2, 2012, https://doi.org/10.6111/JKCGCT.2012.22.2.078
  2. Changes of discharge voltage of plate-type sodium sulfur batteries in the early charge/discharge cycles vol.24, pp.4, 2014, https://doi.org/10.6111/JKCGCT.2014.24.4.164
  3. type layered perovskite as cathode for SOFCs vol.25, pp.3, 2015, https://doi.org/10.6111/JKCGCT.2015.25.3.116