• Title/Summary/Keyword: SODIUM ALGINATE

Search Result 297, Processing Time 0.029 seconds

Drug-release Properties of Double-layered Microspherical Carriers which Consist of Outer Shell of Poly(D,L-lactide) and Inner Core of Alginate or Chitosan (Poly(D,L-lactide)를 외부 껍질로 하고 Alginate 또는 Chitosan을 내부 코어로 구성한 이중미립구 담체의 약물방출 특성)

  • Kim, Ja Won;Song, Min Jeong;Lee, Sang Min;Lim, So Ryong;Jung, Su Jin;Kim, Hong Sung
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.699-704
    • /
    • 2012
  • Double-layered polymeric carrier was designed for release control of hydrophilic drug in oral administration. Biopolymeric chitosan and alginate were examined as polar absorbents, poly(D,L-lactide) as a hydrophobic shell, and theophylline and diclofenac sodium as loading drugs. The fabrication of the carriers was prepared in the form of double-layered microsphere for delayed and successively extended release, which consisted of outer shell of poly(D,L-lactide) and inner core of alginate or chitosan with drugs. Morphologies and drug-release behaviors of the carriers were investigated, which were influenced by a combination of polarity between carrier and drug. It was confirmed that the relative polarities of the carriers, the drugs, and the environmental pH affected significantly the drug-release property.

Sphericity Optimization of Calcium Alginate Gel Beads and the Effects of Processing Conditions on Their Physical Properties

  • Woo, Jin-Wook;Rob, Hye-Jin;Park, Hyun-Duck;Ji, Cheong-Il;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.715-721
    • /
    • 2007
  • In this study, the sphericity of calcium alginate gel beads was optimized using response surface methodology. The optimum conditions for bead sphericity were a concentration of 2.24% sodium alginate, a flow rate of 0.059 mL/sec for the sodium alginate solution, and a 459 rpm rotation for the calcium chloride solution. The predicted and experimental bead sphericities under the optimum conditions were 94.5 and 96.7%, respectively, showing close agreement. We also investigated the processing condition effects for the physical properties of the optimized calcium alginate gel beads. Immersion in hot water slightly decreased bead size and rupture strength. NaCl treatment increased bead size and decreased rupture strength. While the pH of the calcium chloride solution had little effect on bead sphericity, the bead sizes and gel strengths decreased with longer times in each pH solution. The beads coated with pectin and glucomannan showed no significant changes in sphericity, but their sizes decreased with time. The coated beads showed higher rupture strengths than the uncoated beads.

Effect of Extracting Conditions on the Viscosity and Binding Capacity of Metal Ion of Alginate from Sea Tangle, Laminaria spp. (다시마 alginate 점도 및 금속이온 결합능에 미치는 추출조건의 영향)

  • You Byeong-Jin;IM Yeong-Sun;JEONG In-Hak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.267-271
    • /
    • 1998
  • In order to investigate the physical properties of alginate extracted from sea tangle, Laminaria app., under various conditions, viscosity and binding capacity of metal ion (BCMI) of alginate were measured. The higher concentrations of sodium carbonate and the longer extracting time became, the lower apparent viscosity and BCMI were. BCMI in alginate reached maximum at the concentration of 0.06M metal ion. The BCMI of $Pb^{++}$ ion was the highest but $Cu^{++}$ ion was the lowest in the five metal ions. BCMI was increased in proportion as increase of viscosity in alginate.

  • PDF

Preparation and Release Characteristics of Polymer-Reinforced and Coated Alginate Beads

  • Lee, Beom-Jin;Min, Geun-Hong
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.183-188
    • /
    • 1995
  • Polymeric reinforcement and coatings of alginate beads were carried out to control the release rate of drug from alginate beads. A poorly water-soluble ibuprofen (IPF) was selected as a model drug. A commercially available $Eudragit^{\circledR}$ RS100 was also used as a polymer. Effects of polymeric contents, the presence of plasticizers and amount of drug loading on the release rate of drug were investigated. The release rate of drug from alginate beads in the simulated gastric fluid did not occur within 2 h but released immediately when dissolution media were switched to the simulated intestinal fluid. No significant difference of release rate from polymer-reinforced alginate bead without plasticizers was observed when compared to plain (simple) beads. However, the release rate of drug from polymer-reinforced alginate beads was further sustained and retarded when aluminium tristearate (AT) as a plasticizer was added to polymer. However, polyethylene glycol 400 (PEG400) did not change the release rate of drug from alginate beads although PEG400 was used to improve dispersion of polymer and sodium alginate, and plasticize $Eudragit^{\circledR}$ RS100 polymer. The presence of plasticizer was crucial to reinforce alginate gel matrices using a polymer. As the amount of drug loading increased, the release rate of drug increased as a result of decreasing effects of polymer contents in matrices. The significantly sustained release of drug from polymer-coated alginate beads occurred as the amount of polymer increased because the thickness of coated membrane increased so that cracks and pores of the outer surface of alginate beads could be reduced. The sustained and retarded action of polymer-reinforced and coated beads may result from the disturbance of swelling and erosion (disintegration) of alginate beads. From these findings, polymeric-reinforcement and coatings of alginate gel beads can provide an advanced delivery system by retarding the release rate of various drugs.

  • PDF

Chemical Composition and Rheological Properties of Polysaccharides Isolated from Different Parts of Brown Seaweed Undaria pinnatifida (미역(Undaria pinnatifida) 부위별로 추출한 다당의 이화학적 특성)

  • Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.665-671
    • /
    • 2020
  • The chemical and rheological properties of fucoidan and alginate prepared from different parts of Undaria pinnatifida (sporophyll, frond, stipe) were investigated. The algal materials were extracted with HCl (pH 2.0, 3 h at 70℃) to prepare fucoidan, and the remaining solid was continuously re-extracted with Na2CO3 (pH 10.0, 70℃, 3 h) to prepare alginic acid. The fucoidan and alginic acid contents in the sporophyll, frond, and stipe were 11.14%, 3.84%, and 1.73% and 22.04%, 37.14%, and 31.74%, respectively. The content of fucoidan and alginate depends on the part extracted. The fucoidan extracted from the sporophyll mainly consists of fucose and galactose, but the fucoidan extracted from frond and stipe contains mannose in addition to fucose and galactose. Fourier-transform infrared spectroscopy analysis of fucoidan and alginate suggests the presence of sulfate groups (1261 and 840 cm-1) and carboxyl groups (1626 and 1419 cm-1), respectively. Alginate solutions (5%) had a low viscosity of 10.84-31.63 mPa·s. The activation energies of fucoidan and sodium alginate were 14.45-18.38 kJ/mol and 18.61-22.06 kJ/mol, respectively. The D-mannuronic acid/L-guluronic acid (M/G) ratios of alginate showed a relatively high (frond, 3.72; stipe, 2.88; and sporophyll, 1.80).

Screening and Cultivation Characteristics of Alginate Degrading Bacteria (알긴산 분해 미생물의 탐색 및 생육 특성)

  • Uo, Meung-Hee;Joo, Dong-Sik;Cho, Soon-Yeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • For the purpose of oligosaccharide production from alginate, the main component in cell walls of brown algae, the alginate degrading bacteria have been screened from the seaweeds and soil. Among the isolated 69 strains, one strain showing the highest degrading activity was selected and identified as Bacillus licheniformis strain. The adequate sodium alginate concentration for growing the Bacillus licheniformis was $2.0\%$. The effective nitrogen source is nutrient broth $(0.1\%)$, and optimum initial pH, NaCl concentration, temperature and incubation time to produce the alginate degrading enzyme were 7.5, $2\%,\;30{\pm}2^{\circ}C$, and 144 hrs, respectively.

Preparation and in Vitro Release of Melatonin-Loaded Multivalent Cationic Alginate Beads

  • Lee, Beom-Jin;Min, Geun-Hong;Kim, Tae-Wan
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.280-285
    • /
    • 1996
  • The sustained release dosage form which delivers melatonin (MT) in a circadian fashion over 8 h is of clinical value for those who have disordered circadian rhythms because of its short halflife. The purpose of this study was to evaluate the gelling properties and release characteristics of alginate beads varying multivalent cationic species $(Al^{+++}, \; Ba^{++}, \; Ca^{++}, \; Mg^{++}, \; Fe^{+++}, \; Zn^{++})$. The surface morphologies of Ca- and Ba-alginate beads were also studied using scanning electron microscope (SEM). MT, an indole amide pineal hormone was used as a model drug. The $Ca^{++}, \; Ba^{++}, \; Zn^{++}, \; Al^{++}\; and\; Fe^{+++}\; ions\; except\; Mg^{++}$ induced gelling of sodium alginate. The strength of multivalent cationic alginate beads was as follows: $Al^{+++}\llFe^{+++} the induced hydrogel beads were very fragile and less spherical. Fe-alginate beads were also fragile but stronger compared to Al-alginate beads. Ba-alginate beads had a similar gelling strength but was less spherical when compared to Ca-alginate beads. Zn-alginate beads were weaker than Ca- and Ba-alginate beads. Very crude and rough crystals of Ba- and Ca-alginate beads at higher magnifications were observed. However, the type and shape of rough crystals of Ba- and Ca-alginate beads were quite different. No significant differences in release profiles from MT-loaded multivalent cationic alginate beads were observed in the gastric fluid. Most drugs were continuously released upto 80% for 5 h, mainly governed by the passive diffusion without swelling and disintegrating the alginate beads. In the intestinal fluid, there was a significant difference iq the release profiles of MT-loaded multivalent cationic alginate beads. The release rate of Ca-alginate beads was faster when compared to other multivalent cationic alginate beads and was completed for 3 h. Ba-alginate beads had a very long lag time (7 h) and then rapidly released thereafter. MT was continuously released from Feand Zn-alginate beads with initial burstout release. It is assumed that the different release rofiles of multivalent cationic alginate beads resulted from forces of swelling and disintegration of alginate beads in addition to passive diffusion, depending on types of multivalent ions, gelling strength and drug solubility. It was estimated that 0.2M $CaCl_2$ concentration was optimal in terms of trapping efficiency of MT and gelling strength of Ca-alginate beads. In the gastric fluid, Ca-alginate beads gelled at 0.2 M $CaCl_2$ concentration had higher bead strength, resulting in the most retarded release when compared to other concentrations. In the intestinal fluid, the decreased release of Ca-alginate beads prepared at 0.2 M $CaCl_2$ concentration was also observed. However, release profiles of Ca-alginate beads were quite similar regardless of $CaCl_2$ concentration. Either too low or high $CaCl_2$ concentrations may not be useful for gelling and curing of alginate beads. Optimal $CaCl_2$ concentrations must be decided in terms of trapping efficiency and release and profiles of drug followed by curing time and gelling strength of alginate beads.

  • PDF

Characterization of Erwinia tasmaniensis Isolated from Nuruk Producing Alginate Lyase (누룩으로부터 분리한 알긴산 분해 효소 생산 균주인 Erwinia tasmaniensis의 특성)

  • Kim, Hyun Ji;Lee, Sung-Mok;Kim, Sung-Koo;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.100-104
    • /
    • 2012
  • Oligosaccharides production showed various biological activities in vivo like functional foods and industrial materials utilized available within many practical applications which have obtained from the degradation of alginate. Alginate is rich in the main component of seaweeds especially the brown algae. We investigated what degrading alginate from seaweeds to make alginate oligosaccharides can utilize in various fields using enzyme secreting Erwinia tasmaniensis. In this study, we observed an optimal culture condition of E. tasmaniensis, and characteristics of alginate lyase secreting E. tasmaniensis. These bacteria, E. tasmaniensis, were isolated from Nuruk. In this case, a suitable growth factor for E. tasmaniensis was culture it for 36 h in broth media on concentration of 1.0% (w/v) alginate. The enzyme showed the highest level of alginate lyase activity when cultured on broth media containing 1.0% (w/v) sodium alginate for 72 h. Optimal condition of pH, temperature and duration time for alginate lyase activity were found to be pH 6.0, $20^{\circ}C$ and 60 min, respectively.

Preparation and Antimicrobial of Zinc Calcium Alginate Films according to Concentration (농도에 따른 알긴산 아연칼슘 필름의 제조 및 항균성)

  • Seo, Hye-Jin;Jun, So-Yoon;Lee, Woo-Seung;Park, Jae-Hoon;Son, Tae-Won
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.580-587
    • /
    • 2014
  • Composite films of zinc calcium alginate were prepared by a film maker from 7 wt% sodium alginate solution and then they solidified into 3, 5 wt% content $ZnCl_2$, $CaCl_2$ solution followed by washing and drying at room temperature. The characteristics were measured with several methods (antimicrobial activity, water solubility, swelling ratio and viscosity, SEM, EDS) and the film properties were investigated. Composite films of zinc calcium alginate showed an increase in the water resistance by increasing $ZnCl_2$ and $CaCl_2$ content and the antimicrobial test showed that the calcium alginate as well as zinc alginate films result in excellent antimicrobial activity in the two strains, Staphylococcus and Escherichia coli. The results show the possible improvement of the physical properties of composite films.