• Title/Summary/Keyword: SI 방향

Search Result 807, Processing Time 0.024 seconds

Si bulk와 CIGS 박막의 측정분석 차이점

  • Lee, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.24-24
    • /
    • 2010
  • 우리가 잘 아는 반도체 응용분야 중 하나인 박막 태양전지의 기본원리와 이를 양산하기위해 극복해야 할 문제점들과 실제로 어떠한 방향으로 세계적인 연구가 진행되고 있는지 알아 본다. 특히 Si Bulk와 CIGS 박막 태양전지의 측정분석 tool의 차이점은 무엇인지, CIGS 박막 태양전지의 효율 저하를 유발하는 Killer defect들은 어떤 것들이 있는지, 그리고 어떻게 하면 20% 이상의 고효율을 달성할 수 있을지 살펴 보고자 한다. 특히 이러한 효율저하를 일으키는 Sub-bandgap defect에서의 Recombination mechanism에 대한 Device Physics를 SCAPS simulation을 이용하여 쉽게 설명하고자 한다.

  • PDF

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Dependence of Analog and Digital Performance on Carrier Direction in Strained-Si PMOSFET (Strained-Si PMOSFET에서 디지털 및 아날로그 성능의 캐리어 방향성에 대한 의존성)

  • Han, In-Shik;Bok, Jung-Deuk;Kwon, Hyuk-Min;Park, Sang-Uk;Jung, Yi-Jung;Shin, Hong-Sik;Yang, Seung-Dong;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.23-28
    • /
    • 2010
  • In this paper, comparative analysis of digital and analog performances of strained-silicon PMOSFETs with different carrier direction were performed. ID.SAT vs. ID.OFF and output resistance, Rout performances of devices with <100> carrier direction were better than those of <110> direction due to the greater carrier mobility of <100> channel direction. However, on the contrary, NBTI reliability and device matching characteristics of device with <100> carrier direction were worse than those with <110> carrier direction. Therefore, simultaneous consideration of analog and reliability characteristics as well as DC device performance is highly necessary when developing mobility enhancement technology using the different carrier direction for nano-scale CMOSFETs.

Construction and performance evaluation of a medium energy ion scattering spectroscopy system (중 에너지 이온산란 분광장치의 제작 및 성능 평가)

  • 김현경;문대원;김영필;이재철;강희재
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.97-102
    • /
    • 1997
  • A medium energy ion scattering spectroscopy(ME1S) system has been developed and tested.In the MEIS system a toroidal electrostatic energy analyzer(TEA) and a two dimensional position sensitivedetector(PSD) were used. The energy resolution of MEIS system was estimated to be less than $4\times 10^{-3}$ and the overall angular resolution was less than 0.3". From the MEIS spectrum of $Ta_2O_5$(300 $\AA$)/ onSi analyzedousing 60 keV $H^+$, the energy loss factor(S.1 and depth resolution were estimated to he 42 eV/$\AA$ and 9.7 $\AA$, respectively. Also Si(100) surface was analyzed using the MEIS system. A random MElSspectrum was obtained from thc Si(100) covered with native oxide layers. At the double alignment condition, MElS spectrum showed ;i Si surface peak, a oxygen peak and a carbon peak.nd a carbon peak.

  • PDF

Analysis of the microstructure of melting-pool in aluminum specimens fabricated by SLM technique (SLM 기법으로 제작한 알루미늄 시편 내부 멜팅풀 미세조직 분석)

  • Kim, Moo-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.115-119
    • /
    • 2020
  • Selective Laser Melting (SLM) technology is state-of-the-art additive manufacturing process technology that produces a three-dimensional structure by irradiating a laser on a fine metal powder to perform the fusion of a specific area and repeat this process. Owing to the characteristics of the additive manufacturing process, the melting phenomenon of the metal material by the laser has directionality depending on the process conditions, such as the irradiation direction of the laser and the build-up direction. For this reason, the composition of the metal material in the structure exhibits non-uniform characteristics. In this study, aluminum (AlSi10Mg) specimens were manufactured by applying SLM technology, and the material composition characteristics of the specimen were analyzed. The specimens were manufactured as cylinders by the build-up orientation of 0°, 45°, and 90°. The surface morphology of the specimen plane was analyzed optically. TEM analysis was performed on the core and the interface of the melting-pool inside the specimen generated by laser irradiation. The analysis results confirmed that there was a difference between the nano cell structure of the core and the interface of the melting-pool, and that the composition ratio of Si appeared higher at the interface than at the core of the cell.

Growth of Ti on Si(111)-)-$7{\times}7$ Surface and the Formation of Epitaxial C54 $TiSi_2$ on Si(111) Substrate (Si(111)-$7{\times}7$ 면에서 Ti 성장과 C54 $TiSi_2$/Si(111) 정합 성장에 관하여)

  • Kun Ho Kim;In Ho Kim;Jeoung Ju Lee;Dong Ju Seo;Chi Kyu Choi;Sung Rak Hong;Soo Jeong Yang;Hyung Ho Park;Joong Hwan Lee
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 1992
  • The growth of Ti on Si(111)-$7{\times}7$ and the formation of epitaxial C54 $TiSi_2$ were investigated by using reflection high energy electron diffraction(RHEED) and high resolution transmission electron microscopy(HRTEM). Polycrystalline Ti layer is grown on the amorphous Ti-Si interlayer which is formed at the Ti/Si interface by Ti deposition on Si(111)-$7{\times}7$ at room temperature (RT). HRTEM lattice image and transmission electron diffraction(TED) showed that epitaxial C54 $TiSi_2$ grown on Si substrate with 160 ML of Ti on Si(111)-$7{\times}7$ surface at RT, followed by annealing at $750^{\circ}C$ for 10 min in UHV. Thin single crystal Si overlayer with [111] direction is grown on $TiSi_2$ surface when $TiSi_2$/Si(111) is annealed at ${\sim}900^{\circ}C$ in UHV, which was confirmed by Si(111)-$7{\times}7$ superstructure.

  • PDF

Silicon 기판과 SiON 박막 사이의 계면 결함 감소를 위한 $NH_3$ Plasma Treatment 방법에 관한 연구

  • Gong, Dae-Yeong;Park, Seung-Man;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.131-131
    • /
    • 2011
  • 이종접합 태양전지 제작을 위해 기판의 buffer layer로 사용되는 기존의 a-Si 박막을 SiON 박막으로 대체하려는 연구가 진행 중이다. 기존의 a-Si 박막은 대면적에서 균일도를 담보하기 어렵고, 열적 안정성에 취약한 문제점이 있다. 이에 반해 SiON 박막은 일종의 화학 반응인 oxidation 방법으로 형성이 되기 때문에 막의 균일도를 담보 할 수 있고, $400^{\circ}C$이상의 온도에서 형성되기 때문에 열적 안정성이 우수한 장점이 있다. 이러한 장점에도 불구하고 기판위에 직접 형성이 되기 때문에 기판과 SiON 계면 사이의 pssivation이 무엇보다 중요하다. 본 연구에서는 비정질 실리콘 이종접합 태양전지에 적용키 위한 SiON 박막을 형성하고, 기판과 SiON 계면에서의 passivation 향상을 위한 계면 결함 감소에 대한 연구를 진행하였다. 실험을 위한 SiON 박막은 공정온도 $450^{\circ}C$, 공정압력 100 mTorr, 증착파워 120 mW/cm2에서 5분간 증착하였으며, 이때 50 sccm의 N2O 가스를 주입하였다. 증착된 박막은 2~4 nm의 두께로 증착이 되었으며, 1.46의 광학적 굴절률을 가지는 것으로 분석되었다. 계면의 결함을 줄이기 위해 PECVD를 이용한 NH3 plasma treatment를 실시하였다. 공정온도 $400^{\circ}C$, 공정압력 150mTorr~450 mTorr, 플라즈마 파워 60mW/cm2에서 30분간 진행하였으며, 50 sccm의 N2O 가스를 주입하였다. 계면의 결함이 줄었는지 확인하기 위해 C-V 측정을 위한 시료를 제작하여 분석을 하였다. 실험 결과 VFB가 NH3 plasma treatment 이후 positive 방향으로 shift 됨을 알 수 있었다. Dit 분석을 통해 공정 압력 450 mTorr에서 $4.66{\times}108$[cm2/eV]로 가장 낮은 계면 결함 밀도를 확인 할 수 있었다. 결과적으로 NH3 plasma 처리를 통해 positive charge를 갖는 N-content가 형성되었음을 예측해 볼 수 있으며, N-content가 증가하면, 조밀한 Si-N 결합을 형성하면서, boron 및 phosphorus diffusion을 막는데 효과적이다. 또한, plasma treatment 과정에서 H-content에 의한 passivation 효과를 기대할 수 있다.

  • PDF

Structural and optical properties of Si nanowires grown with island-catalyzed Au-Si by rapid thermal chemical vapor deposition(RTCVD) (Au-Si을 촉매로 급속화학기상증착법으로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Kwak, D.W.;Lee, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • We have demonstrated structural evolution and optical properties of the Si-NWs on Si (111) substrates with synthesized nanoscale Au-Si islands by rapid thermal chemical vapor deposition(RTCVD). Au nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. Si-NWs were grown by a mixture gas of $SiH_4\;and\;H_2$ at pressures of $0.1{\sim}1.0$Torr and temperatures of $450{\sim}650^{\circ}C$. SEM measurements showed the formation of Si-NWs well-aligned vertically for Si (111) surfaces. The resulting NWs are 30-100nm in diameter and $0.4{\sim}12um$ in length depending on growth conditions. HR-TEM measurements indicated that Si-NWs are single crystals convered with about 3nm thick layers of amorphous oxide. In addition, optical properties of NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si optical phonon peak with a shoulder at $480cm^{-1}$ were observed in Raman spectra of Si-NWs.

Theoretical Studies on the Structure and Aromaticity of 1H-Indene and Mono-sila-1H-Indene (1H-Indene과 Mono-sila-1H-Indene의 구조와 방향족성에 대한 이론적 연구)

  • Ghiasi, Reza;Monnajemi, Majid
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.281-290
    • /
    • 2006
  • The electronic structure and properties of the 1H-indene and mono-sila-1H-indene series have been investigated using basis set of 6-31G(d, p) and hybrid density functional theory. Basic measures of aromatic character derived from structure, molecular orbitals, a variety of magnetic criteria (magnetic isotropic and anisotropic susceptibilities) are considered. Energetic criteria suggest that In(Si7) enjoy conspicuous stabilization. However, by magnetic susceptibility isotropic this system are among the least aromatic of the family: Within their isomer series, In(Si4) is the most aromatic using this criteria. Natural bond orbital (NBO) analysis method was performed for the investigation of the relative stability and the nature of the 8-9 bonds in 1H-indene and mono-sila-1H-indene compounds. The results explained that how the p character of natural atomic hybrid orbital on X8 and X9 (central bond) is increased by the substitution of the C8 and C9 by Si. Actually, the results suggested that in these compounds, the X8-X9 bond lengths are closely controlled by the p character of these hybrid orbitals and also by the nature of C-Si bonds. The magnitude of the molecular stabilization energy associated to delocalization from X8-X9 and to * X8-X9 bond orbital were also quantitatively determined. Molecular orbital (MO) analysis further reveal that all structure has three delocalized MOs and two delocalized MOs and therefore exhibit the aromaticity.

The Properties of GaN Grown by BVPE Method on the Si(111) Substrate with Pre-deposited Al Layer (Al 박막이 증착 된 Si(111) 기판 위에 HVPE 방법으로 성장한 GaN의 특성)

  • Shin Dae Hyun;Baek Shin Young;Lee Chang Min;Yi Sam Nyung;Kang Nam Lyong;Park Seoung Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2005
  • In this work, we tried to improve the fabrication process in HVPE (Hydride Vapor Phase Epitaxy) system by using Si(111) substrate with pre-deposited Al layer. PL measurements was done for samples with and without pre-deposited Al on Si and it was also examined the dependence of the optical characteristic properties on AlN buffer thickness for GaN/AIN/Al/Si. A sample with thin Al nucleation layer on Si substrate reveals a better optical property than the other. And it suggests that the thickness for AlN buffer layer with thin Al nucleation layer on Si(111) substrate is most proper about $260{\AA}$ to grow GaN in HVPE system. The surface morphology of GaN clearly shows the hexagonal crystallization. The XRD pattern showed strong peak at GaN{0001} direction.