• Title/Summary/Keyword: SC diversity

Search Result 84, Processing Time 0.027 seconds

The Average SER of MPSK Signals for a Generalized Selection Diversity Combining over Nakagami Fading Channels (나카가미 페이딩 체널에서 일반화된 선택성 다이버시티를 사용한 MPSK 신호의 평균 심벌 오류 확률)

  • Choi, Se-Yeong;Yoon, Dong-Weon;Han, Young-Yearl
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.19-24
    • /
    • 1998
  • In this paper, a new closed form expression for the average symbol error rate(SER) of generalized selection combining(SC), whereby the two(three) signals with the two(three) largest amplitudes are combined from the original diversity branches in the channel, for MPSK signals in a frequency-nonselective slowly m-distributed Nakagami fading channel is derived. In order to analyze the error performance for a generalized SC, the Order-Statistics is applied. To derive the SER of MPSK signals with SC, the new expression of pdf is introduced and many other mathematical methods are used. Comparing the derived SER with that of MRC, we find adequate diversity branch number from total Lth-order diversity branches.

  • PDF

3/4-rate SFBC SSB SC FDMA System with 4 Transmit Antennas (4개의 송신 안테나를 갖는 3/4 비율의 주파수 공간 블록 부호 단일 측대 파형 SC FDMA 시스템)

  • Won, HuiChul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.6
    • /
    • pp.1-9
    • /
    • 2021
  • In order to increase frequency transmission efficiency, single side band(SSB) transmission systems with the complex conjugate symmetry characteristics on a frequency domain have been studied. In addition, orthogonal block codes(space-time or space-frequency block code(SFBC)) for the diversity performance gain of transmission systems have been widely researched. In this paper, we implement a 3/4-rate SFBC SSB single-carrier(SC) frequency division multiple access(FDMA) system with 4 transmit antennas. It can be shown from the simulation results that the proposed SFBC SSB SC FDMA system using the 3/4-rate 4×4 orthogonal block code outperforms the conventional SSB SC FDMA system and the 2×2 SFBC SSB SC FDMA system with 2 transmit antennas.

Analysis on SC-2 Diversity Systems for the Reception of M-ary Signals over Rayleigh Fading Channels

  • Kim, Chang-Hwan;Kim, Hyeong-Kyo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.201-206
    • /
    • 2007
  • When the M-ary signal experiences the Rayleigh fading, the diversity schemes can reduce the effects of fading since the probability that all the signals components will fade simultaneously are reduced considerably. The symbol error probabilities for various M-ary signals, such as MDPSK, MPSK and MQAM, are mathematically derived for the SC-2(Selection Combining 2) demodulation system, whereby the two signals with the two largest amplitudes are coherently combined among the L branches. On the other hand, maximum ratio combining(MRC) requires the individual signals from each path to be time-aligned, cophased, optimally weighted by their own fading amplitude, and then summed. The propagation model used in this paper is the frequency-nonselective slow Rayleigh fading channel corrupted by the Additive White Gaussian Noise(AWGN). The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.

Evaluation on the Selective Combining for the Detection of M-ary DPSK Signals over Nakagami Fading Channels

  • Na, Seung-Gwan;Kim, Chang-Hwan;Jin, Yong-Ok
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.74-82
    • /
    • 2007
  • The performances of M-ary DPSK(MDPSK) for diversity reception theoretically are derived, using an L-branch selection combining(SC) in frequency-nonselective slow Nakagami fading channels. For integer values of the Nakagami fading parameter m, An exact closed-form symbol error rate(SER) multichannel performance that can be easily evaluated via numerical integration is presented. Finally, we compare these analyses with numerical analyses with integral-form expressions for the performance of MDPSK signals under the effect of two-branch SC diversity over slow and nonselective Rician fading channels with additive white Gaussian noise(AWGN).

Analysis of BER According to Spatial and Frequency Diversity Gain in Uplink SC-FDMA with SIMO Systems (상향링크 SIMO 시스템에서 공간 및 주파수 다이버시티 이득에 따른 SC-FDMA의 BER 성능 분석)

  • Lee, Jin-Hui;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.535-547
    • /
    • 2014
  • We investigate BER (Bit Error Ratio) performance according to the gain of spatial and frequency diversities in uplink SC-FDMA of SIMO (Single Input Multiple Output) systems. The main results of the analysis in this paper are as follows. First, we prove that performance of integrated system for considering spatial and frequency diversity combining in parallel is equivalent with the performance of sequential system for performing diversity combining in sequence. By signal modeling, it is demonstrated that the performances of both systems are the same when the frequency diversity combining technique of the sequential system is equal to diversity combining technique of the integrated system, and spatial diversity combining technique of the sequential system is performed as MRC in advance of frequency diversity combining. Secondly, it is found that effect on the BER performance is different according to the gain of spatial and frequency diversities, respectively. The frequency diversity gain increases by increasing the number of subcarrier. It might affect the performance improvement of high SNR(Signal to Noise Ratio) while it maintains gap between performances of ZF(Zero Forcing) and MMSE(Minimum Mean Square Error) in frequency diversity combining schemes. Also, spatial diversity gain increases as the number of receiving antennas increases. It means that it can reduce performance gap between ZF and MMSE in frequency diversity combining schemes by increasing the number of receiving antennas. In addition, it might affect the performance improvement of the whole SNR. Finally, through the analysis of performance according to the spatial diversity gain, the performance of ZF in frequency diversity combining is equal to the MMSE if the number of receiving antennas is 6 or more.

Error Rate Performance of BCH Coded DS-CDMA 16 QAM Signal in Selective Combining Diversity Reception in Rician Fading Environments (라이시안 페이딩 환경에서 BCH 부호화된 DS-CDMA 16 QAM 신호의 선택합성 다이버시티 수신시의 오율 성능)

  • 오성진;김언곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.154-158
    • /
    • 2003
  • In this paper, Error rate performance of BCH coded DS-CDMA 16 QAM signal is analyzed using selective combining Diversity reception techniques in the environments of Rician fading. First in the performance of DS-CDMA 16 QAM signal in Rician fading channel, Second using SC diversity recepting techniques, and third using both diversity and BCH coding error rate performance is evaluated. from the results of Numerical analyzed it is found that a synergistic performance improvement is shown due to both diversity reception and coding techniques overcoming mobile wireless data communication channel environments.

  • PDF

An Improved LLR Generation Technique for SC-FDMA Systems Using Frequency Domain MMSE Equalization (주파수 영역 MMSE 등화방식 기반의 SC-FDMA 시스템을 위한 개선된 LLR 생성 기법)

  • Kim, Jin-Min;Im, Tae-Ho;Kim, Jae-Kwon;Yi, Joo-Hyun;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1197-1207
    • /
    • 2009
  • Orthogonal Frequency Division Multiple Access (OFDMA) is widely used as a multiple access technique for next generation mobile communication systems, however, its main drawback is the high peak-to-average ratio (PAPR). Thus for the uplink case where the transmit power is strictly limited due to the battery life of mobile units, single carrier frequency division multiple access (SC-FDMA) with low PAPR is preferred to OFDMA method. In this paper, we propose a method to improve the performance of SC-FDMA using frequency domain MMSE equalization. The proposed improved log-likelihood ratio (LLR) generation method exploits both the diversity characteristic of channels and the reciprocity that is obtained from the received signals. The complexity of the proposed method is analyzed and its performance gain is demonstrated via a set of computer simulations.

MRC MMSE Equalization for SC-FDE in Amplify-and-Forward Relaying Networks (AF 방식 중계기 네트워크에서의 SC-FDE를 위한 MRC MMSE 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • Relay-assisted multiple input multiple output (MIMO) technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose maximum ratio combining (MRC) minimum mean-square-error (MMSE) equalization for single carrier-frequency domain equalizer (SC-FDE) in amplify-and-forward (AF) relaying networks. The performance of SC-FDE system can be improved considerably by achieving both the diversity gain and the MMSE equalization gain when the signals from source-destination (S->D) and source-relay-destination (S->R->D) are combined and equalized by means of the MMSE criteria. We find the weighting coefficients of MRC combining and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying networks. Simulation results show that the proposed relay-based system considerably outperforms the conventional SC-FDE system.

Error Performance of 16 QAM Signal with Optimum Threshold Detection and SC Diversity Techniques in Rician Fading Channel (Rician 페이딩 채널에서 최적검파 및 선택합성 다이버시티 기법을 도입한 16QAM 신호의 오율 특성)

  • 김언곤;고봉진;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 1994
  • We have proposed the optimum threshold detection(OTD) technique of 16 QAM signal in the Rician fading channel and analyzed its error performance with and without the selective combining(SC) diversity technique. And we compared the error performance of OTD with that of conventional threshold detection(CTD). Having the SC diveresity reception, optimum threshold detection(OTD) technique proposed in this paper provides the performance improvement of 1.8~3.2 [dB] in CNR for fading depth K values ranging from 5 to 30 over CTD when the error rate is $10_5$. From the result of numerical analysis, we know that the proposed OTD technique is superior to CTD technique in the Rician fading channel and adoption of the SC diversity technique with the proposed OTD can be considered as a good countermeasure for the Rician fading.

  • PDF

New Analysis on the Generalization of SC Systems for the Reception of M-ary Signals over Rayleigh Fading Channels

  • Yoon Jae-Yeun;Kim Chang-Hwan;Chin Yong-Ok
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • When the M-ary signal experiences the Rayleigh fading, the diversity schemes can reduce the effect of fading since the probability that all the signals components will fade simultaneously is reduced considerably. The symbol error probabilities for various M-ary signals, such as MDPSK(M-ary DPSK) and MPSK(M-ary PSK), are mathematically derived for the Selection Combining 2(SC-2) and Selection Combining 3(SC-3) demodulation system which requires a less complex receiver than Maximum Ratio Combining(MRC). The propagation model used in this paper is the frequency-nonselective slow Rayleigh fading channel corrupted by the Additive White Gaussian Noise(AWGN). The numerical results presented in this paper are expected to provide information for the design of radio system using M-ary modulation method for above mentioned channel environment.