• Title/Summary/Keyword: SBF solution

Search Result 44, Processing Time 0.038 seconds

Precalcification Treatment of $TiO_2$ Nanotube on Ti-6Al-4V Alloy (Ti-6Al-4V 합금 표면에 생성된 $TiO_2$ 나노튜브의 전석회화 처리)

  • Kim, Si-Jung;Park, Ji-Man;Bae, Tae-Sung;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Statement of problem: Recently precalcification treatment has been studied to shorten the period of the implant. Purpose: This study was performed to evaluate the effect of precalcification treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy. Material and methods: Specimens of $20{\times}10{\times}2\;mm$ in dimensions were polished sequentially from #220 to #1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. The nanotubular layer was processed by electrochemical anodic oxidation in electrolytes containing 0.5 M $Na_2SO_4$ and 1.0 wt% NaF. Anodization was carried out using a regulated DC power supply (Kwangduck FA, Korea) at a potential of 20 V and current density of $30\;㎃/cm_2$ for 2 hours. Specimens were heat-treated at $600^{\circ}C$ for 2 hours to crystallize the amorphous $TiO_2$ nanotubes, and precalcified by soaking in $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. To evaluate the bioactivity of the precalcified $TiO_2$ nanotube layer, hydroxyapatite formation was investigated in a Hanks' balanced salts solution with pH 7.4 at $36.5^{\circ}C$ for 2 weeks. Results: Vertically oriented amorphous $TiO_2$ nanotubes of diameters 48.0 - 65.0 ㎚ were fabricated by anodizing treatment at 20 V for 2 hours in an 0.5 M $Na_2SO_4$ and 1.0 NaF solution. $TiO_2$ nanotubes were composed with strong anatase peak with presence of rutile peak after heat treatment at $600^{\circ}C$. The surface reactivity of $TiO_2$ nanotubes in SBF solution was enhanced by precalcification treatment in 0.5 M $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. The immersion in Hank's solution for 2 weeks showed that the intensity of $TiO_2$ rutile peak increased but the surface reactivity decreased by heat treatment at $600^{\circ}C$. Conclusion: This study shows that the precalcified treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy enhances the surface reactivity.

Powder Synthesis and Sintering Behavior of Hydroxyapatite by Citrate Method (Citrate법을 이용한 수산화아파타이트 분말합성 및 소결특성)

  • 임병일;최세영;정형진;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1003-1011
    • /
    • 1996
  • Hydroxyapatite powder was synthesized by a citrate method, . Char-like precursor composed of Ca8(HPO4)2(PO4)4.5H2O (OCP) and CaCo3 was found via viscous resin-like intermediate by heating the mixed aqueous solution of Ca(NO3)2.4H2O(NH4)2HPO4 and citric acid. Resulted powder was transformed into hydroxyapatite phase by firing over 120$0^{\circ}C$-135$0^{\circ}C$ for 4 hr using the powder calcined at 90$0^{\circ}C$ for 10 hr composed of mostly single hydroxyapatite phase. The sintered densities increased with firing temperature up to 130$0^{\circ}C$ but the highest relative density was about 94% of theoritical value. indicating the presence of closed pores. The maximum 96 MPa of flexural strength was obtained at 120$0^{\circ}C$ firing but the flexural strength showed lower values over the above sintering condition. Vitro test was performed by immersing of two jointed specimens in SBF for seven days and adhesion was observed between two specimens.

  • PDF

A simple chemical method for conversion of Turritella terebra sea snail into nanobioceramics

  • Sahin, Yesim Muge;Orman, Zeynep;Yucel, Sevil
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.492-498
    • /
    • 2018
  • In this study, a sea shell was converted into bioceramic phases at three different sintering temperatures ($450^{\circ}C$, $850^{\circ}C$, $1000^{\circ}C$). Among the obtained bioceramic phases, a valuable ${\beta}-TCP$ was produced via mechanochemical conversion method from sea snail Turritella terebra at $1000^{\circ}C$ sintering temperature. For this reason, only the bioceramic sintered at $1000^{\circ}C$ was concentrated on and FT-IR, SEM/EDX, BET, XRD, ICP-OES analyses were carried out for the complete characterization of ${\beta}-TCP$ phase. Biodegradation test in Tris-buffer solution, bioactivity tests in simulated body fluid (SBF) and cell studies were conducted. Bioactivity test results were promising and high rate of cell viability was observed in MTT assay after 24 hours and 7 days incubation. Results demonstrated that the produced ${\beta}-TCP$ bioceramic is qualified for further consideration and experimentation with its features of pore size and ability to support bone tissue growth and cell proliferation. This study suggests an easy, economic method of nanobioceramic production.

Effect of Surface Treatment on Bioactivity of Ti-Ni Shape Memory Alloys (Ti-Ni형상기억합금의 생체활성에 미치는 표면처리의 영향)

  • Choi, Mi-Seon;Nam, Tae-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.881-886
    • /
    • 2009
  • Research into the replacement of injured systems and tissue in the human body is advancing rapidly. Recently, Ti-Ni shape memory alloys have shown excellent biofunctionality related to their shape memory effect and superelasticity. In this study, the effect of an acid or an alkali treatment on the bioactivity in 49Ti-Ni and 51.5Ti-48.5Ni alloys is investigated in an effort to utilize Ti-Ni alloy as a biomaterial. In addition, the biocompatibility in a SBF solution is assessed through in vitro testing. A porous surface was formed on the surface of both alloys after a chemical treatment. According to the in vitro test, apatite formed on the surfaces of both alloys. The forming rate of apatite in the Ti-rich alloy was faster that in the Ni-rich alloy. The formation of apatite provided proof of the bioactivity of the Ti-Ni alloy. A small quantity of Ni was eluted at the initial stage, whereas Ni was not found for 12 days in the Ti-rich alloy and for 8 days in the Ni-rich alloy. In the case of the treated 51.5Ti-Ni alloy, the shape memory property was worsened but the biocompatibility was improved.

Preparation of CaO-SiO2-B2O3 Glass-ceramics and Evaluation of Bioactivity Using in-vitro Test (CaO-SiO2-B2O3계 결정화 유리의 제조와 in-vitro법을 이용한 생체활성 평가)

  • Ryu, Hyun-Seung;Seo, Jun-Hyuk;Kim, Hwan;Hong, Kug-Sun;Kim, Deug-Joong;Lee, Jae-Hyup;Lee, Dong-Ho;Chang, Bong-Soon;Lee, Choon-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.490-497
    • /
    • 2002
  • Sintering property, mechanical property and bioactivity of $CaO-SiO_2-B_2O_3$ glass-ceramics were investigated. This glass-ceramics was sintered at 750-830${\circ}$ and showed nearly pore-free microstructure. The glass-ceramics consisted of three phases, i.e. monclinic-wollastonite, calcium borate and borosilicate glass matrix. The mechanical strength was higher than that of other bioactive ceramics, especially compressive strength(2813 MPa) and fracture toughness($3.12 MPa{\cdot}m^{1/2}$). Bioactivity of the glass-ceramics depends on amount of $CaB_2O_4$ and borosilicate glass matrix. It might be likely that more soluble $CaB_2O_4$ raises supersaturation of Ca ion in SBF solution and borosilicate glass forms Si-OH group that presents nucleation site of hydroxycarbonate apatite(HCA) layer. So, glassceramics of more $CaB_2O_4$ and borosilicate glass showed better bioactivity.

A study of apatite formation on NaOH treated Ti alloys with different Iron content (NaOH 처리한 Fe 첨가된 Ti alloys의 아파타이트 형성관찰)

  • Seung-Woo Lee;Yun-Jong Kim;Jae-Gyeoung Ruy;Taik-Nam Kim
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2004
  • Metals, ceramics and polymers are widely used as bioimplant materials. However, Ti and Ti alloys are widely used because of its high strength to weight ratio and good biocompatibility when implanted in the body. In this experiment, Ti alloys of Grade-4 (gr4), 0.2 wt % Fe, 0.5 wt % Fe and 2 wt % Fe were studied for their surface morphology and HAp forming ability on the metal substrate for different treatments. Intially, the samples were mechanically polished on silicone carbide paper (No.-2000). The polished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. The NaOH treated samples were washed gently with distill water and dried at $40^{\circ}C$ for 1 day. The dried samples were heated in air at $600^{\circ}C$ for 1 hour. The surface morphology of these samples were studied using SEM. The SEM studies showed network of pores in all samples. These samples were immersed in stimulated body fluids (SBF) kept at $36.5^{\circ}C$ for different periods over the length of 1 to 14 days. The apatite formation was confirmed on all Ti-alloys using EDAX.

  • PDF

Ag Impregnated HAp Coatings on Alumina Substrate by IBAD and Its Biological Test (IBAD를 이용하여 알루미나 위에 HAp를 Coating하는 연구와 이의 항균력 시험)

  • Park, Eui-Seo;Kim, Taik-Nam;Yim, Hyuk-Jun;Kim, Yun-Jong;Hwang, Deuk-Soo;Kim, Jung-Woo;Kim, Sun-Ok
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.181-187
    • /
    • 1998
  • Hydroxyapatite was used as implant materials, because it has a good biocompatibility and is similar to human bone. However it is not expected to have a high strength as implant materials because of a low fracture strength after sintering of HAp. Alumina ($\alpha$-alumina) shows a stable chemical properties and high strength in physiological environments. Thus it was tried to use a HAp coatings on Alumina substrate as implant materials. In this study, HAp was coated on Alumina substrate by lon Beam Assisted Deposition(IBAD). Then Ag was impregnated on HAp coating layer, which showed antimicrobial effects. To carry out the ion exchange of $Ag^+$ with $Ca^{2+}$ in HAp on the surface, HAp coated alumina substrate was immersed in 20ppm, 100ppm $AgNO_3$ solution at room temperature for 48 hours. Antimicrobial test was studied by using bacteria, which normally caused periprosthetic infections. The follwing bacteria was used in antimicrobial test. Escherichia coli, Pseudomonas aeruginosa (gram negative) and staphylococcus epidermidis (gram positive). Ag impregnated HAp shows very good antimicrobial effects against these bacteria. The surface structure of sample, which was treated in $AgNO_3$ solution was studied by SEM, XRD. Ag release curve was studied in Simulated Body Fluid (SBF) solution.

  • PDF

Coating of two kinds of bioactive glass on Ti6Al4V alloy (Ti6Al4V 합금에 두 종류의 생체활성화 유리 코팅)

  • Kang, Eun-Tae;Lee, Nam-Young;Choi, Hyun-Bin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.206-210
    • /
    • 2018
  • Two kinds of bioactive glass were coated on the Ti6Al4V alloy by the enameling technique. In order to reduce the thermal stress due to the difference in expansion coefficient with the alloy with the secondary coating forming hydroxyapatite, the difference in expansion coefficient between the alloy and the two glasses was adjusted at $2{\times}10^{-6}/^{\circ}C$ intervals. FE-SEM and EDS analysis showed that good adhesion was formed between the Ti6Al4V alloy and the primary coating by diffusion bonding. After immersion in SBF solution, it was confirmed from FT-IR that hydroxycarbonate apatite formed in the secondary coating was not different from bulk bioactive glass.

Biocompatibility of Ti-8wt.%Ta-3wt.%Nb alloy with Surface Modification (표면 개질에 따른 Ti-8wt.%Ta-3wt.%Nb 합금의 생체적합성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Park, Bum-Su;Lee, Kwang-Min;Park, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.277-284
    • /
    • 2006
  • The alloys were prepared by a non-consumable vacuum arc melting and homogenized at $1050^{\circ}C$ for 24 hrs. Two kind of surface modifications were performed alkali treatment in 5.0M NaOH solution subsequent and heat treatment in vacuum furnace at $600^{\circ}C$, and were oxidizing treatment at the temperature range of 550 to $750^{\circ}C$ for 30 minutes. After surface modification, these samples were soaked in SBF which consists of nearly the same ion concentration as human blood plasma. Cytotoxicity tests were performed in MTT assay treated L929 fibroblast cell culture, using indirect methods. A porous and thin activated layer was formed on Titanium and Ti-8Ta-3Nb alloy by the alkali treatment. A bone-like hydroxyapatite was nucleated on the activated porous surfaces during the in vitro test. However, Ti-8Ta-3Nb alloys showed better bioactive properties than Titanium. According to XRD results, oxide layers composed of mostly $TiO_2$(rutile) phases. Cytotoxicity test also revealed that moderate oxidation treatment lowers cell toxicity and Ti-8Ta-3Nb alloy showed better results compared with Titanium.

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF