Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2018.28.5.206

Coating of two kinds of bioactive glass on Ti6Al4V alloy  

Kang, Eun-Tae (School of Nano & Advanced Materials Engineering, Gyeongsang National University)
Lee, Nam-Young (School of Nano & Advanced Materials Engineering, Gyeongsang National University)
Choi, Hyun-Bin (Research & Development Team, Korea Alumina Co., Ltd.)
Abstract
Two kinds of bioactive glass were coated on the Ti6Al4V alloy by the enameling technique. In order to reduce the thermal stress due to the difference in expansion coefficient with the alloy with the secondary coating forming hydroxyapatite, the difference in expansion coefficient between the alloy and the two glasses was adjusted at $2{\times}10^{-6}/^{\circ}C$ intervals. FE-SEM and EDS analysis showed that good adhesion was formed between the Ti6Al4V alloy and the primary coating by diffusion bonding. After immersion in SBF solution, it was confirmed from FT-IR that hydroxycarbonate apatite formed in the secondary coating was not different from bulk bioactive glass.
Keywords
Bioactive glass coating; Enamel technique; Ti6Al4V alloy; Hydroxyapatite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R.M. Wilson, S.E.P. Dowker and J.C. Elliott, "Rietveld refinements and spectroscopic structural studies of a Nafree carbonate apatite made by hydrolysis of monetite", Biomaterials 27 (2006) 4682.   DOI
2 C. Rey, B. Collins, T. Goehl, I. Dickson and M. Glimcher, "The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy", Calcif. Tissue Int. 45 (1989) 157.   DOI
3 I. Lebecq, F. Desanglois, A. Leriche and C. Follet-Houttemane, "Compositional dependence on the in vitro bioactivity of invert or conventional bioglasses in the Si-Ca-Na-P system", J. Biomed. Mater. Res. A 83 (2007) 156.
4 M.D. O'Donnell, S.J. Watts, R.G. Hill and R.V. Law, "The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses", J. Mater. Sci. Mater. Med. 20 (2009) 1611.   DOI
5 J. Serra, P. Gonzalez, S. Liste, C. Serra, S. Chiussi, B. Leon, M. Perez-Amor, H.O. Ylanen and M. Hupa, "FTIR and XPS studies of bioactive silica based glasses", J. Non-Cryst. Solids 332 (2003) 20.   DOI
6 H. Ylanen, K.H. Karlsson, A. Itala and H.T. Aro, "Effect of immersion in SBF on porous bioactive bodies made by sintering bioactive glass microspheres", J. Non-Cryst. Solids 275 (2000) 107.   DOI
7 N. Lotfibakhshaiesh, D.S. Brauer and R.G. Hill, "Bioactive glass engineered coatings for Ti6Al4V alloys: influence of strontium substitution for calcium on sintering behavior", J. Non-Cryst. Solids 356 (2010) 2583.   DOI
8 M. Brink, "The influence of alkali and alkaline earths on the working range for bioactive glasses", J. Biomed. Mater. Res. 36[1] (1997) 109.   DOI
9 T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity", Biomaterials 27 (2006) 2907.   DOI
10 W.D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials", J. Am. Ceram. Soc. 38[1] (1955) 3.   DOI
11 A.K. Srivastava, R. Pyare and S.P. Singh, "In vitro bioactivity and physical - mechanical properties of $Fe_2O_3$ substituted 45S5 bioactive glasses and glass-ceramics", Inter. J. Sci. & Eng. Res. 3[2] (2012) 1.
12 S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma and A.P. Tomsia, "Bioactive glass coatongs for orthopedic metallic implants", J. Eur. Ceram. Soc. 23 (2003) 2921.   DOI
13 H. Liu, H. Yazici, C. Ergun, T.J. Webster and H. Bermek, "An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration", Acta. Biomater. 4 (2008) 1472.   DOI
14 S.A. MacDonald, C.R. Schardt and D. Masiello, "Dispersion analysis of FTIR reflection measurements in silicate glasses", J. Non-Cystal. Solids 275 (2000) 72.   DOI
15 S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma and A.P. Tomsia, "Bioactive glass coatings for orthopedic metallic implants", J. Eur. Ceram. Soc. 23 (2003) 2921.   DOI
16 R.V. Santos and R.N. Clayton, "The carbonate content in high-temperature apatite: An analytical method applied to apatite from the Jacupiranga alkaline complex", Am. Mineral. 80 (1995) 336.   DOI
17 I. Rehman and W. Bonfield, "Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy", J. Mat. Sci.: Mater. Med. 8 (1997) 1.
18 J.M. Gomez-Vega, E. Saiz, A.P. Tomsia, G.W. Marshall and S.J. Marshall, "Bioactive glass coating with hydroxyapatite and $Bioglass^{(R)}$ particles on Ti-based implants. 1. Processing", Biomaterials 21 (2000) 105.   DOI
19 B.D. Ratner, "A perspective on Titanium biocompatibility and Titanium for medical applications", in Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Ed., (Springer, Berlin, Germany, 2001) p. 1.
20 R. Branemark, L.O. Ohrnell, P. Nilsson and P. Thomson, "Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat", Biomaterials 18 (1997) 969.   DOI
21 K.A. Gross, V. Gross and C.C. Berdin, "Thermal analysis of amorphous phases in hydroxyapatite coatings", J. Am. Ceram. Soc. 81[1] (1998) 106.   DOI
22 A.M. Baool, O. Omar, W. Xia and A. Palmquist, "Dental implant surfaces - physicochemical properties, biological performance, and Trends", in Implant dentistry - a rapidly evolving practice, I. Turkyilmaz Ed., (InTech, London, 2011) p. 19.
23 W. Suchanek and M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", J. Mater. Res. 13 (1998) 94.   DOI
24 S.W. Ha, R. Reber, K.L. Ecjert, M. Petitmermet, J. Mayer, E. Wintermanterl, C. Baerlacher and H. Gruner, "Chemical and morphological changes of vacuumplasma-sprayed hydroxyapatite coatings during immersion in simulated physiological solutions", J. Am. Ceram. Soc. 81[1] (1998) 81.   DOI
25 L.L. Hench, "Bioceramics," J. Am. Ceram. Soc. 81[7] (1998) 1705.   DOI
26 R. Boyer, G. Welsch and E.W. Collings, "Materials Properties Handbook: Titanium Alloys" (ASM International, Materials Park, OH, 1994) p. 493.
27 D. Bellucci, V. Cannillo and A. Sola, "Coefficient of thermal expansion of bioactive glasses: available literature data and analytical equation estimates", Ceram. Int. 37 (2011) 2963.   DOI
28 R.G. Hill and D.S. Brauer, "Predicting the bioactivity of glasses using the network connectivity or split network models", J. Non-Cryst. Solids 357 (2011) 3884.   DOI
29 D.R. Bloyer, J.M. Comez-Vega, E. saiz, J.M. Mcnaney, R.M. Cannon and A.P. Tomsia, "Fabrication and characterization of a bioactive glass coating on titanium implant alloys", Acta. Meter. 47[15] (1999) 4221.   DOI