Browse > Article

A simple chemical method for conversion of Turritella terebra sea snail into nanobioceramics  

Sahin, Yesim Muge (ArelPOTKAM (Polymer Technologies and Composite Application and Research Center), Istanbul Arel University)
Orman, Zeynep (Department of Bioengineering, Yildiz Technical University)
Yucel, Sevil (Department of Bioengineering, Yildiz Technical University)
Publication Information
Abstract
In this study, a sea shell was converted into bioceramic phases at three different sintering temperatures ($450^{\circ}C$, $850^{\circ}C$, $1000^{\circ}C$). Among the obtained bioceramic phases, a valuable ${\beta}-TCP$ was produced via mechanochemical conversion method from sea snail Turritella terebra at $1000^{\circ}C$ sintering temperature. For this reason, only the bioceramic sintered at $1000^{\circ}C$ was concentrated on and FT-IR, SEM/EDX, BET, XRD, ICP-OES analyses were carried out for the complete characterization of ${\beta}-TCP$ phase. Biodegradation test in Tris-buffer solution, bioactivity tests in simulated body fluid (SBF) and cell studies were conducted. Bioactivity test results were promising and high rate of cell viability was observed in MTT assay after 24 hours and 7 days incubation. Results demonstrated that the produced ${\beta}-TCP$ bioceramic is qualified for further consideration and experimentation with its features of pore size and ability to support bone tissue growth and cell proliferation. This study suggests an easy, economic method of nanobioceramic production.
Keywords
Bioactivity; Bioceramic; Bone regeneration; TCP; Mechanochemical conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. N. Oktar, H. Gokce, O. Gunduz, Y.M. Sahin, D. Agaogullari, I.G. Turner, L.S. Ozyegin, B. Ben-Nissan, Key Eng. Mater. 631 (2014) 137-142.   DOI
2 O. Gunduz, C. Gode, Z. Ahmad, H. Gokce, M. Yetmez, C. Kalkandelen, F. N. Oktar, Journal Of The Mechanical Behavior Of Biomedical Materials 35 (2014) 70-76.   DOI
3 I. Karaca, O. Gunduz, L.S. Ozyegin, H. Gokce, B. Ben-Nissan, S. Akyol, F. N. Oktar, Journal of the Australian Ceramic Society 54 (2017) 317-329.
4 Y. M. Sahin, O. Gunduz, B. Bulut, L.S. Ozyegin, H. Gokce, D. Alaogullari, F. N. Oktar, Acta Physica Polonica A. 127[4] (2015) 1055-1058.   DOI
5 J. H. G. Rocha, A.F.Lemosa, S.Agathopoulos, P.Valerio, S.Kannan, F.N.Oktar, J.M.F.Ferreira, Bone 37[6] (2005) 850-857.   DOI
6 K.-R. Kang, Z.-G. Piao, J.-S., In-A Cho, M.-J. Yim, B.-H. this chemical Kim, J.-S. Oh, J. S. Son, C. S. Kim, D. K. Kim, S.-Y. Lee, S.-G. Kim Implant Dent. 26[3] (2017) 378-387.   DOI
7 D. Kel, H. Gokce, D. Bilgic, D. Adaodullary, I. Duman, M.L. Ovecodlu, E. S. Kayali, I. A. Kiyici, S. Agathopoulos, F.N. Oktar, Key Eng. Mater. 493-494 (2011) 287-292.   DOI
8 S. Agathopoulos, L.S. Ozyegin, Z. Ahmad, O. Gunduz, E.S. Kayali, O. Meydanoglu, F.N. Oktar, Key Eng. Mater. 493-494 (2011) 775-780.   DOI
9 O. Gunduz, Y. M. Sahin, S. Agathopoulos, B. Ben-Nissan, and F. N. Oktar, J. Nanomater. 2014 (2014) 1-6.
10 O. Gunduz, Y.M. Sahin, S. Agathopoulos, D. Adaodullary, H. Gokce, E.S. Kayali, C. Aktas, B. Ben-Nissan, F.N. Oktar, Key Eng. Mater. 587 (2013) 80-85.   DOI
11 T. Kokubo, H. Takadama, Biomaterials 27[15] (2006) 2907-2915.   DOI
12 B. Mehdikhani, G. Borhani, J. Ceram. Process. Res. 16[3] (2015) 308-312.
13 A. Sobczak-Kupiec, Z. Wzorek, R. Kijkowska, Z. Kowalski, Bull. Mater. Sci. 36[4] (2013) 755-764.   DOI
14 A. Ibrahim, W. Wei, D. Zhang, H. Wang, J. Li, Materials Letter 110(2013)195-197.   DOI
15 Bui, X. V., & Thang, T. D., ASEAN Journal on Science and Technology for Development. 33[2] (2016)38-68.   DOI
16 P. Sobierajska, A. Dorotkiewicz Jach, K. Zawisza, J. Okal, T. Olszak, Z. Drulis-Kawa, R. J.Wiglusz J. Alloys Compd. 748 (2018) 179-187.   DOI