DOI QR코드

DOI QR Code

Precalcification Treatment of $TiO_2$ Nanotube on Ti-6Al-4V Alloy

Ti-6Al-4V 합금 표면에 생성된 $TiO_2$ 나노튜브의 전석회화 처리

  • Kim, Si-Jung (Department of Dental Prosthodontics, School of Medicine, Ewha Womans University) ;
  • Park, Ji-Man (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Bae, Tae-Sung (Department of Dental Materials, School of Dentistry, Chonbuk National University) ;
  • Park, Eun-Jin (Department of Dental Prosthodontics, School of Medicine, Ewha Womans University)
  • 김시정 (이화여자대학교 의학전문대학원 치과보철과 대학원) ;
  • 박지만 (서울대학교 치의학대학원 치과보철과 대학원) ;
  • 배태성 (전북대학교 치의학전문대학원 치과재료학교실) ;
  • 박은진 (이화여자대학교 의학전문대학원 치과보철과)
  • Published : 2009.01.30

Abstract

Statement of problem: Recently precalcification treatment has been studied to shorten the period of the implant. Purpose: This study was performed to evaluate the effect of precalcification treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy. Material and methods: Specimens of $20{\times}10{\times}2\;mm$ in dimensions were polished sequentially from #220 to #1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. The nanotubular layer was processed by electrochemical anodic oxidation in electrolytes containing 0.5 M $Na_2SO_4$ and 1.0 wt% NaF. Anodization was carried out using a regulated DC power supply (Kwangduck FA, Korea) at a potential of 20 V and current density of $30\;㎃/cm_2$ for 2 hours. Specimens were heat-treated at $600^{\circ}C$ for 2 hours to crystallize the amorphous $TiO_2$ nanotubes, and precalcified by soaking in $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. To evaluate the bioactivity of the precalcified $TiO_2$ nanotube layer, hydroxyapatite formation was investigated in a Hanks' balanced salts solution with pH 7.4 at $36.5^{\circ}C$ for 2 weeks. Results: Vertically oriented amorphous $TiO_2$ nanotubes of diameters 48.0 - 65.0 ㎚ were fabricated by anodizing treatment at 20 V for 2 hours in an 0.5 M $Na_2SO_4$ and 1.0 NaF solution. $TiO_2$ nanotubes were composed with strong anatase peak with presence of rutile peak after heat treatment at $600^{\circ}C$. The surface reactivity of $TiO_2$ nanotubes in SBF solution was enhanced by precalcification treatment in 0.5 M $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. The immersion in Hank's solution for 2 weeks showed that the intensity of $TiO_2$ rutile peak increased but the surface reactivity decreased by heat treatment at $600^{\circ}C$. Conclusion: This study shows that the precalcified treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy enhances the surface reactivity.

연구목적: 최근 치과용 임플란트의 임상 경향이 전체 치료기간을 줄일 수 있는 방법에 관심이 집중됨에 따라 불활성의 티타늄 임플란트 표면에 활성을 부여하기 위한 다양한 표면처리 방법이 검토되고 있다. 본 연구에서는 높은 강도가 요구되는 부위의 임플란트 재료로서 사용되고 있지만 표면 특성이 순 티타늄에 비해 떨어지는 Ti-6Al-4V 합금의 골전도성을 개선할 목적으로 시행되었다. 연구 재료 및 방법: $20{\times}10{\times}2\;mm$의 Ti-6Al-4V 합금판을 준비한 다음 $TiO_2$ 나노튜브를 형성하기 위해 DC 정전원 장치의 양극과 음극에 각각 시편과 백금판을 결선하고 0.5 M $Na_2SO_4$와 1.0 wt% NaF를 함유하는 전해액을 사용하여 전압 20 V와 전류밀도 $30\;㎃/cm^2$ 조건에서 2시간 동안 양극산화 처리하였다. $TiO_2$ 나노튜브 형성 후 산화 피막층의 결정화를 유도하기 위해 $600^{\circ}C$에서 2시간 동안 열처리하였고, 표면활성도를 개선하기 위해 0.5 M $Na_2HPO_4$ 수용액 24시간 침적과 $Ca(OH)_2$ 포화 수용액에 5시간 침적을 시행하였다. 준비한 시편의 표면 반응성을 조사하기 위해 pH와 무기이온의 농도를 사람의 혈장과 유사하게 조절한 Hanks 용액 (H2387, Sigma Chemical Co., USA)에 2주간 침적하였다. 결과: 20 V에서의 양극산화처리로 직경 48.0 - 65.0 ㎚ 범위의 무정형의 $TiO_2$ 나노튜브가 전체 표면에 걸쳐서 균일하게 생성되는 양상을 보였다. $TiO_2$ 나노튜브는 $600^{\circ}C$에서 2시간 열처리 후 상대적으로 강한 anatase 피크와 함께 rutile 피크가 관찰되었다. $TiO_2$ 나노튜브의 표면활성도는 0.5 M $Na_2HPO_4$ 수용액 24시간 침적과 $Ca(OH)_2$ 포화수용액에 5시간 침적으로 개선되었다. 열처리와 전석회화 처리 후 SBF에 침적한 결과, $TiO_2$ rutile 피크의 상대적 강도는 크게 증가되었지만 HA의 석출은 저하되는 경향을 보였다. 결론: 이상의 결과로 미루어 볼 때, 양극산화 처리한 $TiO_2$ 나노튜브는 $600^{\circ}C$에서의 열처리에 의해 피막층이 안정화되고, 0.5 M $Na_2HPO_4$ 수용액 24시간 침적과 $Ca(OH)_2$ 포화수용액에 5시간 침적으로 표면에 인산칼슘층을 형성하는 것이 표면활성도를 개선하는데 유효함을 알 수 있었다.

Keywords

References

  1. Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater 2007;3:359-67. https://doi.org/10.1016/j.actbio.2006.08.004
  2. Kokubo T, Mijaji F, Kim HM, Nakamura T. Spontaneous apatite formation on chemically surface treated Ti. J Am Ceram Soc 1996;79:1127-9. https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  3. Hanawa T, Ukai H, Murakami K, Asaoka K. Structure of surface-modified layers of calcium-ion-implanted Ti-6Al- 4V and Ti-56Ni. Mater Trans JIM 1995;36:438-44. https://doi.org/10.2320/matertrans1989.36.438
  4. Ishizawa H, Fujino M, Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995;29:1459-68. https://doi.org/10.1002/jbm.820291118
  5. Feng B, Chen JY, Qi SK, He L, Zhao JZ, Zhang XD. Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials 2002;23:173-9. https://doi.org/10.1016/S0142-9612(01)00093-X
  6. Balasundaram G, Yao C, Webster TJ. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 2008;84:447-53. https://doi.org/10.1002/jbm.a.31388
  7. Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Nicoli Aldini N, Torricelli P, Vicentini B. In vitro and in vivo behaviour of Ca- and P-enriched anodized titanium. Biomaterials 1999;20:1587-94. https://doi.org/10.1016/S0142-9612(99)00060-5
  8. Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995;29:65-72. https://doi.org/10.1002/jbm.820290110
  9. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:1071-9. https://doi.org/10.1002/jbm.820290907
  10. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 2004;178:13-22. https://doi.org/10.1159/000081089
  11. Kasemo B, Lausmaa J. Metal selection and surface characteristics. In: Br°anemark PI, Zarb GA, Albrektsson T (eds), Tissue-integrated prostheses, Osseointegration in clinical dentistry. Chicago: Quintessence; 1985. pp. 99-116.
  12. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 2004;25:1003-10. https://doi.org/10.1016/S0142-9612(03)00626-4
  13. Beranek R, Hidebrand H, Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolyte. Electrochemical and Solid-State Letters 2003;6:B12-B14. https://doi.org/10.1149/1.1545192
  14. Kaneco S, Chen Y, Westerhoff P, Crittenden JC. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Materials 2007;56:373-6 https://doi.org/10.1016/j.scriptamat.2006.11.001
  15. Wen HB, Wolke JG, de Wijn JR, Liu Q, Cui FZ, de Groot K. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 1997;18:1471-8 https://doi.org/10.1016/S0142-9612(97)82297-1
  16. Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgOCaO- SiO2-P2O5. J Mater Soc 1986;21:536-40. https://doi.org/10.1007/BF01145520
  17. Kim KN, Bae TS, So JM. Comparison on the calcium phosphate precipitation of NaOH-treated titanium and bioglass- ceramic CaO-P2O5 system. J Korean Res Soc Dent Mater 2001;28:247-52.
  18. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 1994;28:7-15. https://doi.org/10.1002/jbm.820280103
  19. Yang BC, Weng J, Li XD, Zhang XD. The order of calcium and phosphate ion deposition on chemically treated titanium surfaces soaked in aqueous solution. J Biomed Mater Res 1999;47:213-9. https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<213::AID-JBM11>3.0.CO;2-C
  20. Takadama H, Kim HM, Kokubo T, Nakamura T. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J Biomed Mater Res 2001;55:185-93. https://doi.org/10.1002/1097-4636(200105)55:2<185::AID-JBM1005>3.0.CO;2-P

Cited by

  1. 나노구조 표면에 관한 문헌고찰 vol.29, pp.2, 2013, https://doi.org/10.14368/jdras.2013.29.2.141