• 제목/요약/키워드: S. griseus

검색결과 56건 처리시간 0.028초

The Structural Characterization of the Putative DNA-Binding Protein BldB from Streptomyces Lividans

  • Ochiriin, Tsogbadrakh-Mishig;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.49-49
    • /
    • 2002
  • Mutants blocked at the earliest stages of morphological development in Streptomyces species are called bld mutants. We have cloned bldB gene ORF from Slividans. Genomic Southern blot analysis for main strains S.lividans, S.seoulensis, S.coelicolor A3(2), and S.griseus indicated that bldB gene is conserved in all main Streptomyces strains.(omitted)

  • PDF

Microbe-Based Plant Defense with a Novel Conprimycin Producing Streptomyces Species

  • Kwak, Youn-Sig
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.54-54
    • /
    • 2015
  • Crops lack genetic resistance to most necrotrophic soil-borne pathogens and parasitic nematodes that are ubiquitous in agroecosystems worldwide. To overcome this disadvantage, plants recruit and nurture specific group of antagonistic microorganisms from the soil microbiome to defend their roots against pathogens and other pests. The best example of this microbe-based defense of roots is observed in disease-suppressive soils in which the suppressiveness is induced by continuously growing crops that are susceptible to a pathogen. Suppressive soils occur globally yet the microbial basis of most is still poorly described. Fusarium wilt, caused by Fusarium oxysporum f. sp. fragariae is a major disease of strawberry and is naturally suppressed in Korean fields that have undergone continuous strawberry monoculture. Here we show that members of the genus Streptomyces are the specific bacterial components of the microbiome responsible for the suppressiveness that controls Fusarium wilt of strawberry. Furthermore, genome sequencing revealed that Streptomyces griseus, which produces a novel thiopetide antibiotic, is the principal species involved in the suppressiveness. Finally, chemical-genetic studies demonstrated that S. griseus antagonizes F. oxysporum by interfering with fungal cell wall synthesis. An attack by F. oxysporum initiates a defensive "cry for help" by strawberry root and the mustering of microbial defenses led by Streptomyces. These results provide a model for future studies to elucidate the basis of microbially-based defense systems and soil suppressiveness from the field to the molecular level.

  • PDF

Efficient Cloning of the Genes for RNA Polymerase Sigma-like Factors from Actinomycetes

  • Kim, Soon-Ok;Hyun, Chang-Gu;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.280-283
    • /
    • 1998
  • We have cloned the RNA polymerase sigma-like factors from a wide range of actinomycetes by using specific primers with the polymerase chain reaction (PCR). The specific oligonucleotide primers were designed on the basis of amino acid sequences of conserved regions from HrdA, B, D of Streptomyces griseus as well as from the rpoD box of many eubacteria. The consensus sequences were from the rpoD box and helix-turn-helix motif involved in -35 recognition. The designed primers were successfully applied to amplify the DNA fragments of the hrd homolog genes from 8 different strains of actinomycetes which produce a wide variety of important antibiotics. The 480 bp of the DNA fragment was amplified from all 8 strains, and it was identified as a part of hrdA and hrdB as we designed. The deduced amino acid sequence of PCR-amplified DNA fragments were highly homologous to those of other known RNA polymerase sigma factors of S. griseus and Streptomyces aureofaciens. Therefore, this study with specifically designed primers will support rapid cloning of the RNA polymerase sigma factors which recognize different classes of promoters from actinomycetes, and it will also be helpful in understanding the relationship of promoters and sigma factors leading to heterogeneity of RNA polymerases in actinomycetes.

  • PDF

Novel Function of Cytokinin: A Signaling Molecule for Promotion of Antibiotic Production in Streptomycetes

  • Yang Young-Yell;Zhao Xin-Qing;Jin Ying-Yu;Huh Jung-Hyun;Cheng Jin-Hua;Singh Deepak;Kwon Hyung-Jin;Suh Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.896-900
    • /
    • 2006
  • Cytokinin has been known to act as a plant hormone to promote cell division and function in diverse processes in plant growth and development. Besides being produced in plants, it is also produced by various bacteria and fungi; however, its ecological significance is still unclear. In this report, we present an interesting finding that transzeatin riboside (tZR), a naturally occurring cytokinin compound, increased antibiotic production in many different streptomycetes, including Streptomyces coelicolor Ml3O, S. pristinaespiralis ATCC 25486, S. violaceoruber Tu22, S. anfibioticus ATCC l1891, and S. griseus IFO 13350. In vitro plate assays showed that the addition of 100 $\mu$M tZR increased the growth inhibition of Pseudomonas syringae pv. syringae, a plant pathogen, by S. griseus, a streptomycin producer. We suggest that cytokinin could act as a signaling molecule for antibiotic production in streptomycetes, a group of rhizosphere bacteria.

방선균의 식물생육촉진 효과와 식물병원균에 대한 항균활성 (Effects of Streptomyces spp. on Growth of Plants and Antifungal Activity of Plant Pathogens)

  • 한지희;박경석;이상엽;김정준
    • 농약과학회지
    • /
    • 제16권4호
    • /
    • pp.383-386
    • /
    • 2012
  • 비농경지의 식물 근권토양에서 식물체의 초기생육촉진 효과가 있는 방선균을 분리하였다. 분리된 미생물의 16S rDNA 염기서열을 분석한 결과 Streptomyces spp.로 동정되었다. Streptomyces griseus (MSS181), Streptomyces griseoaurantiacus (MSS269), Streptomyces microflavus (MSS275), Streptomyces herbaricolor (MSS276)의 배양액을 오이, 고추, 담배와 토마토의 생육초기단계에 관주 처리하여 식물체의 초장, 건조중량을 측정하였다. 방선균 처리에 의해 오이의 초장은 대조구에 비해 16-29% 증가하였으나 건조중량에는 통계적으로 유의한 차이가 없었다. 같은 방선균을 고추에 처리하였을 때 고추의 초장은 대조구에 비해 10-19%, 건조중량은 19-25% 증가하였다. 담배의 건조중량은 44-73% 증가하였고 토마토의 건조중량도 65-165% 증가하였다. 공시균주의 식물병원균에 대한 항균활성을 검정한 결과, MSS275의 Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani와 Sclerotinia sclerotiorum에 대한 강한 항균활성을 확인하였다.

Brevibacterium ammoniagenes의 DNA Polymerase I 유사 유전자의 분석 (Analysis of a Putative DNA Polymerase I gene in Brevibacterium ammoniagenes.)

  • 오영필;윤기홍
    • 한국미생물·생명공학회지
    • /
    • 제30권2호
    • /
    • pp.105-110
    • /
    • 2002
  • The sequence of 3,221 nucleotides immediately adjacent to rpsA gene encoding 30S ribosomal protein S1 of Brevibacterium ammoniagenes was determined. A putative open reading frame (ORF) of 2,670 nucleotides for a polypeptide of 889 amino acid residues and a TAG stop codon was found, which is located at a distance of 723 nucleotides upstream from rpsA gene with same translational direction. The deduced amino acid sequence of the ORF was found to be highly homologous to the DNA polymerase I of Streptomyces griseus (75.48%), Rhodococcus sp. ATCC 15963 (56.69%), Mycobacterium tuberculosis (55.46%) and Mycobacterium leprae (53.99%). It was suggested that the predicted product of the ORF is a DNA polymerase I with three functional domains. Two domains of 5 → 3 exonuclease and DNA polymerase are highly conserved with other DNA polymerase I, but 3 → 5 exonuclease domain is less conserved.

Chinese hamster와 Armenian hamster에서 얻은 여러 細胞系에 대한 乳酸데히드로게나제 아이소자임 패턴에 관한 比較硏究 (Comparative Study of Lactic Dehydrogenase Isozyme patterns in Clonal Derivatives of Chinese and Armenian Hamsters)

  • Kang, Yung-Sun;Sahsook Hahn
    • 한국동물학회지
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 1974
  • Chinese hamster, Cricetulus griseus 와 Armenian hamster, Cricetulus migratorius의 正常細胞, 腫瘍瘤에서 由來된 細胞 및 바이러스로 再形質轉換된 細胞의 乳酸데히드로게나제(LDH) 패턴을 電氣永動法에 의해 測定하여 比較하였다. 이 두 종류의 電基泳動移動度는 비슷했으며, 纖維芽細胞는 LDH-5만 나타내었고, adenovirus로 形質轉換된 上皮性인 細胞에서는 LDH-1-2-3-4-5, 2-3-4-5, 또는 3-4-5와 같은 패턴을 보여 주었다. 그러나 上皮性細胞가 自然的으로, 혹은 SV40 바이러스 處理로 因해서 纖維芽細胞로 변하였을 경우는 역시 LDH-5 패턴만 보여 주었다.

  • PDF

Identification of a Cryptic Type III Polyketide Synthase (1,3,6,8-Tetrahydroxynaphthalene Synthase) from Streptomyces peucetius ATCC 27952

  • Ghimire, Gopal Prasad;Oh, Tae-Jin;Liou, Kwangkyoung;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.362-367
    • /
    • 2008
  • We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA).

Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes

  • Kim, In-Seop;Kang, Sung-Gyun;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • 제33권4호
    • /
    • pp.315-321
    • /
    • 1995
  • The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp.In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl .alpha.-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.

  • PDF