Novel Function of Cytokinin: A Signaling Molecule for Promotion of Antibiotic Production in Streptomycetes

  • Yang Young-Yell (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University) ;
  • Zhao Xin-Qing (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University) ;
  • Jin Ying-Yu (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University) ;
  • Huh Jung-Hyun (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University) ;
  • Cheng Jin-Hua (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University) ;
  • Singh Deepak (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University) ;
  • Kwon Hyung-Jin (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University) ;
  • Suh Joo-Won (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
  • Published : 2006.06.01

Abstract

Cytokinin has been known to act as a plant hormone to promote cell division and function in diverse processes in plant growth and development. Besides being produced in plants, it is also produced by various bacteria and fungi; however, its ecological significance is still unclear. In this report, we present an interesting finding that transzeatin riboside (tZR), a naturally occurring cytokinin compound, increased antibiotic production in many different streptomycetes, including Streptomyces coelicolor Ml3O, S. pristinaespiralis ATCC 25486, S. violaceoruber Tu22, S. anfibioticus ATCC l1891, and S. griseus IFO 13350. In vitro plate assays showed that the addition of 100 $\mu$M tZR increased the growth inhibition of Pseudomonas syringae pv. syringae, a plant pathogen, by S. griseus, a streptomycin producer. We suggest that cytokinin could act as a signaling molecule for antibiotic production in streptomycetes, a group of rhizosphere bacteria.

Keywords

References

  1. Bloemberg, G. V. and B. J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350 https://doi.org/10.1016/S1369-5266(00)00183-7
  2. Choi, D. B. and K. Cho. 2004. Effect of carbon source consumption rate on lincomycin production from Sreptomyces lincolnensis. J. Microbiol. Biotechnol. 14: 532-539
  3. Frankenberger, W. T. and J. R. Muhammad Arshad. 1995. In Robert E. Wilkinson (ed.), Phytohormones in Soils, pp. 227-281. Marcel Dekker Inc, New York
  4. Hesketh, A. R., J. H. Sun, and M. Bibb. 2001. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol. Microbiol. 39: 136-144 https://doi.org/10.1046/j.1365-2958.2001.02221.x
  5. Huh, J. H., D. J. Kim, X. Q. Zhao, M. Li, Y. Y. Jo, T. M. Yoon, S. K. Shin, J. H. Yong, Y. W. Ryu, Y. Y. Yang, and J. W. Suh. 2004. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. FEMS Microbiol. Lett. 238: 439-447 https://doi.org/10.1111/j.1574-6968.2004.tb09787.x
  6. James, P. D. and C. Edwards. 1989. The effects of temperature on growth and production of the antibiotic granaticin by a thermotolerant streptomycete. J. Gen. Microbiol. 135: 1997-2003
  7. Jeong, D. H., K. D. Park, S. H. Kim, K. R. Kim, S. W. Choi, J. T. Kim, K. H. Choi, and J. H. Kim. 2004. Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi, and its structure. J. Microbiol. Biotechnol. 14: 212-215
  8. Kieser, T., M. J. Bibb, K. F. Chater, and D. A. Hopwood. 2000. In: Practical Streptomyces Genetics, pp.75-98. John Innes Foundation, Norwich, England
  9. Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antiobiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
  10. Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111 https://doi.org/10.1046/j.1365-2958.1999.01579.x
  11. Ping, L. and W. Boland. 2004. Signals from the underground: Bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 9: 263-266 https://doi.org/10.1016/j.tplants.2004.04.008
  12. Recio, E., A. Colinas, A. Rumbero, J. F. Aparicio, and J. F. Martin. 2004. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J. Biol. Chem. 279: 41586-41593 https://doi.org/10.1074/jbc.M402340200
  13. Rhee, K. H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
  14. Sohng, J. K., H. C. Lee, K. K. Liou, E. B. Lee, S. Y. Kang, and J. S. Woo. 2003. Cystocin, a novel antibiotic, produced by Streptomyces sp. GCA0001: Production and characterization of cystocin. J. Microbiol. Biotechnol. 13: 483-486
  15. Susstrunk, U., J. Pidoux, S. Taubert, A. Ullmann, and C. J. Thompson. 1998. Pleiotropic effects of cAMP on germination, antibiotics biosynthesis and morphological development in Streptomyces coelicolor. Mol. Microbiol. 30: 33-46 https://doi.org/10.1046/j.1365-2958.1998.01033.x
  16. Thibaut, D., N. Ratet, D. Bisch, D. Faucher, L. Debussche, and F. Blanche. 1995. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J. Bacteriol. 177: 5199-5205 https://doi.org/10.1128/jb.177.18.5199-5205.1995
  17. Tornus, D. and H. G. Floss. 2001. Identification of four genes from the granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tu22 involved in the biosynthesis of $_L$-rhodinose. J. Antibiot. 54: 91-101 https://doi.org/10.7164/antibiotics.54.91
  18. Vilches, C., C. Mendez, C. Hardisson, and J. A. Salas. 1990. Biosynthesis of oleandomycin by Streptomyces antibioticus: Influence of nutritional conditions and development of resistance. J. Gen. Microbiol. 136: 1447-1454 https://doi.org/10.1099/00221287-136-8-1447