Browse > Article

Novel Function of Cytokinin: A Signaling Molecule for Promotion of Antibiotic Production in Streptomycetes  

Yang Young-Yell (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Zhao Xin-Qing (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Jin Ying-Yu (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Huh Jung-Hyun (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Cheng Jin-Hua (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Singh Deepak (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Kwon Hyung-Jin (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Suh Joo-Won (Institute of Bioscience and Biotechnology, Department of Biological Science, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 896-900 More about this Journal
Abstract
Cytokinin has been known to act as a plant hormone to promote cell division and function in diverse processes in plant growth and development. Besides being produced in plants, it is also produced by various bacteria and fungi; however, its ecological significance is still unclear. In this report, we present an interesting finding that transzeatin riboside (tZR), a naturally occurring cytokinin compound, increased antibiotic production in many different streptomycetes, including Streptomyces coelicolor Ml3O, S. pristinaespiralis ATCC 25486, S. violaceoruber Tu22, S. anfibioticus ATCC l1891, and S. griseus IFO 13350. In vitro plate assays showed that the addition of 100 $\mu$M tZR increased the growth inhibition of Pseudomonas syringae pv. syringae, a plant pathogen, by S. griseus, a streptomycin producer. We suggest that cytokinin could act as a signaling molecule for antibiotic production in streptomycetes, a group of rhizosphere bacteria.
Keywords
Antibiotics; cytokinin; streptomycetes; tZR;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Frankenberger, W. T. and J. R. Muhammad Arshad. 1995. In Robert E. Wilkinson (ed.), Phytohormones in Soils, pp. 227-281. Marcel Dekker Inc, New York
2 Jeong, D. H., K. D. Park, S. H. Kim, K. R. Kim, S. W. Choi, J. T. Kim, K. H. Choi, and J. H. Kim. 2004. Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi, and its structure. J. Microbiol. Biotechnol. 14: 212-215
3 Recio, E., A. Colinas, A. Rumbero, J. F. Aparicio, and J. F. Martin. 2004. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J. Biol. Chem. 279: 41586-41593   DOI   ScienceOn
4 Susstrunk, U., J. Pidoux, S. Taubert, A. Ullmann, and C. J. Thompson. 1998. Pleiotropic effects of cAMP on germination, antibiotics biosynthesis and morphological development in Streptomyces coelicolor. Mol. Microbiol. 30: 33-46   DOI   ScienceOn
5 Ping, L. and W. Boland. 2004. Signals from the underground: Bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 9: 263-266   DOI   ScienceOn
6 Thibaut, D., N. Ratet, D. Bisch, D. Faucher, L. Debussche, and F. Blanche. 1995. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J. Bacteriol. 177: 5199-5205   DOI
7 Rhee, K. H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
8 Kieser, T., M. J. Bibb, K. F. Chater, and D. A. Hopwood. 2000. In: Practical Streptomyces Genetics, pp.75-98. John Innes Foundation, Norwich, England
9 Bloemberg, G. V. and B. J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350   DOI   ScienceOn
10 James, P. D. and C. Edwards. 1989. The effects of temperature on growth and production of the antibiotic granaticin by a thermotolerant streptomycete. J. Gen. Microbiol. 135: 1997-2003
11 Sohng, J. K., H. C. Lee, K. K. Liou, E. B. Lee, S. Y. Kang, and J. S. Woo. 2003. Cystocin, a novel antibiotic, produced by Streptomyces sp. GCA0001: Production and characterization of cystocin. J. Microbiol. Biotechnol. 13: 483-486
12 Tornus, D. and H. G. Floss. 2001. Identification of four genes from the granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tu22 involved in the biosynthesis of $_L$-rhodinose. J. Antibiot. 54: 91-101   DOI   ScienceOn
13 Huh, J. H., D. J. Kim, X. Q. Zhao, M. Li, Y. Y. Jo, T. M. Yoon, S. K. Shin, J. H. Yong, Y. W. Ryu, Y. Y. Yang, and J. W. Suh. 2004. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. FEMS Microbiol. Lett. 238: 439-447   DOI   ScienceOn
14 Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antiobiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092   과학기술학회마을
15 Hesketh, A. R., J. H. Sun, and M. Bibb. 2001. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol. Microbiol. 39: 136-144   DOI   ScienceOn
16 Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111   DOI   ScienceOn
17 Vilches, C., C. Mendez, C. Hardisson, and J. A. Salas. 1990. Biosynthesis of oleandomycin by Streptomyces antibioticus: Influence of nutritional conditions and development of resistance. J. Gen. Microbiol. 136: 1447-1454   DOI   ScienceOn
18 Choi, D. B. and K. Cho. 2004. Effect of carbon source consumption rate on lincomycin production from Sreptomyces lincolnensis. J. Microbiol. Biotechnol. 14: 532-539   과학기술학회마을