• 제목/요약/키워드: S-prime ideal

Search Result 82, Processing Time 0.048 seconds

ASSOCIATED PRIME IDEALS OF A PRINCIPAL IDEAL

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.8 no.1
    • /
    • pp.87-90
    • /
    • 2000
  • Let R be an integral domain with identity. We show that each associated prime ideal of a principal ideal in R[X] has height one if and only if each associated prime ideal of a principal ideal in R has height one and R is an S-domain.

  • PDF

On the Ideal Extensions in Γ-Semigroups

  • Siripitukdet, Manoj;Iampan, Aiyared
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.585-591
    • /
    • 2008
  • In 1981, Sen [4] have introduced the concept of $\Gamma$-semigroups. We have known that $\Gamma$-semigroups are a generalization of semigroups. In this paper, we introduce the concepts of the extensions of s-prime ideals, prime ideals, s-semiprime ideals and semiprime ideals in $\Gamma$-semigroups and characterize the relationship between the extensions of ideals and some congruences in $\Gamma$-semigroups.

WEAKLY PRIME IDEALS IN COMMUTATIVE SEMIGROUPS

  • Anderson, D.D.;Chun, Sangmin;Juett, Jason R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.829-839
    • /
    • 2019
  • Let S be a commutative semigroup with 0 and 1. A proper ideal P of S is weakly prime if for $a,\;b{\in}S$, $0{\neq}ab{\in}P$ implies $a{\in}P$ or $b{\in}P$. We investigate weakly prime ideals and related ideals of S. We also relate weakly prime principal ideals to unique factorization in commutative semigroups.

GENERALIZED PRIME IDEALS IN NON-ASSOCIATIVE NEAR-RINGS I

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.281-285
    • /
    • 2012
  • In this paper, the concept of *-prime ideals in non-associative near-rings is introduced and then will be studied. For this purpose, first we introduce the notions of *-operation, *-prime ideal and *-system in a near-ring. Next, we will define the *-sequence, *-strongly nilpotent *-prime radical of near-rings, and then obtain some characterizations of *-prime ideal and *-prime radical $r_s$(I) of an ideal I of near-ring N.

Weakly Prime Ideals in Involution po-Γ-Semigroups

  • Abbasi, M.Y.;Basar, Abul
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.629-638
    • /
    • 2014
  • The concept of prime and weakly prime ideal in semigroups has been introduced by G. Szasz [4]. In this paper, we define the involution in po-${\Gamma}$-semigroups, then we extend some results on prime, semiprime and weakly prime ideals to the involution po-${\Gamma}$-semigroup S. Also, we characterize intra-regular involution po-${\Gamma}$-semigroups. We establish that in the involution po-${\Gamma}$-semigroup S such that the involution preserves the order, an ideal of S is prime if and only if it is both weakly prime and semiprime and if S is commutative, then the prime and weakly prime ideals of S coincide. Finally, we prove that if S is a po-${\Gamma}$-semigroup with order preserving involution, then the ideals of S are prime if and only if S is intra-regular.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

ON PSEUDO 2-PRIME IDEALS AND ALMOST VALUATION DOMAINS

  • Koc, Suat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.897-908
    • /
    • 2021
  • In this paper, we introduce the notion of pseudo 2-prime ideals in commutative rings. Let R be a commutative ring with a nonzero identity. A proper ideal P of R is said to be a pseudo 2-prime ideal if whenever xy ∈ P for some x, y ∈ R, then x2n ∈ Pn or y2n ∈ Pn for some n ∈ ℕ. Various examples and properties of pseudo 2-prime ideals are given. We also characterize pseudo 2-prime ideals of PID's and von Neumann regular rings. Finally, we use pseudo 2-prime ideals to characterize almost valuation domains (AV-domains).

PRIME BI-IDEALS OF GROUPOIDS

  • Lee, S.K.
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.217-221
    • /
    • 2005
  • Kehayopulu and Tsingelis [2] studied prime ideals of groupoids. Also the author studied prime left (right) ideals of groupoids. In this paper, we give some results on prime bi-ideals of groupoids.

  • PDF

ON PRIME LEFT(RIGHT) IDEALS OF GROUPOIDS-ORDERED GROUPOIDS

  • Lee, S.K.
    • Korean Journal of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • Recently, Kehayopulu and Tsingelis studied for prime ideals of groupoids-ordered groupoids. In this paper, we give some results on prime left(right) ideals of groupoid-ordered groupoid. These results are generalizations of their results.

  • PDF