KYUNGPOOK Math. J. 48(2008), 585-591

On the Ideal Extensions in Γ -Semigroups

MANOJ SIRIPITUKDET AND AIYARED IAMPAN Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand e-mail: manojs@nu.ac.th and aiyaredi@nu.ac.th

ABSTRACT. In 1981, Sen [4] have introduced the concept of Γ -semigroups. We have known that Γ -semigroups are a generalization of semigroups. In this paper, we introduce the concepts of the extensions of *s*-prime ideals, prime ideals, *s*-semiprime ideals and semiprime ideals in Γ -semigroups and characterize the relationship between the extensions of ideals and some congruences in Γ -semigroups.

1. Preliminaries

Let M and Γ be any two nonempty sets. M is called a Γ -semigroup [5], [7] if for all $a, b, c \in M$ and $\gamma, \mu \in \Gamma$, we have (i) $a\gamma b \in M$ and (ii) $(a\gamma b)\mu c = a\gamma(b\mu c)$. A Γ -semigroup M is called a *commutative* Γ -semigroup if $a\gamma b = b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$. A nonempty subset K of a Γ -semigroup M is called a *sub*- Γ -semigroup of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

For examples of Γ -semigroups, see [1], [3], [5], [6], [7].

Let S be a semigroup and $\Gamma = \{1\}$. We define a mapping $S \times \Gamma \times S \longrightarrow S$ by a1b = ab for all $a, b \in S$. Then S is a Γ -semigroup. Hence we have known that Γ -semigroups are a generalization of semigroups.

For nonempty subsets A and B of a Γ -semigroup M and a nonempty subset Γ' of Γ , let $A\Gamma'B := \{a\gamma b : a \in A, b \in B \text{ and } \gamma \in \Gamma'\}$. If $A = \{a\}$, then we also write $\{a\}\Gamma'B$ as $a\Gamma'B$, and similarly if $B = \{b\}$ or $\Gamma' = \{\gamma\}$. A nonempty subset I of a Γ -semigroup M is called an *ideal* of M if $M\Gamma I \subseteq I$ and $I\Gamma M \subseteq I$. The intersection of all ideals of a Γ -semigroup M containing a nonempty subset A of M is the *ideal of M generated by A*, and will be denoted by I(A). If $A = \{x\}$, then we also write $I(\{x\})$ as I(x). An ideal I of a Γ -semigroup M is called an *s-prime ideal* [3] of M if for any $a, b \in M$ and $\gamma \in \Gamma, a\gamma b \in I$ implies $a \in I$ or $b \in I$. Equivalently, for any $A, B \subseteq M$ and $\gamma \in \Gamma, A\gamma B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. An ideal I of a Γ -semigroup M is called a *prime ideal* of M if for any $a, b \in I$ and $\gamma \in \Gamma, A\gamma B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. In the indeal I of a Γ -semigroup M is called a *prime ideal* of M if for any $a, b \in I$ implies $a \in I$ or $B \subseteq I$. An ideal I of a Γ -semigroup M is called a *prime ideal* of M if for any $a, b \in I$ and $\gamma \in \Gamma, A\gamma B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. An ideal I of a Γ -semigroup M is called a *prime ideal* of M if for any $a, b \in I$ or $B \subseteq I$ implies $a \in I$ or $B \subseteq I$.

Received June 30, 2006, and, in revised form, January 15, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 20M99, 06B10.

Key words and phrases: Γ -semigroup, extension of *s*-prime ideal, prime ideal, *s*-semiprime ideal and semiprime ideal.

⁵⁸⁵

An ideal I of a Γ -semigroup M is called an *s*-semiprime ideal of M if for any $a \in M$ and $\gamma \in \Gamma, a\gamma a \in I$ implies $a \in I$. Equivalently, for any $A \subseteq M$ and $\gamma \in \Gamma, A\gamma A \subseteq I$ implies $A \subseteq I$. An ideal I of a Γ -semigroup M is called a *semiprime ideal* of Mif for any $a \in M, a\Gamma a \subseteq I$ implies $a \in I$. Equivalently, for any $A \subseteq M, A\Gamma A \subseteq I$ implies $A \subseteq I$. Hence we have the following statements for Γ -semigroups.

- (1) Every s-prime ideal is a prime ideal.
- (2) Every prime ideal is a semiprime ideal.
- (3) Every *s*-prime ideal is an *s*-semiprime ideal.
- (4) Every s-semiprime ideal is a semiprime ideal.

For a Γ -semigroup M, let

 $P(M) := \{A : A \text{ is a prime ideal of } M\},\$ $SP(M) := \{A : A \text{ is an } s \text{-prime ideal of } M\}.$

Then $\emptyset \neq SP(M) \subseteq P(M)$. A sub- Γ -semigroup F of a Γ -semigroup M is called a *filter* [3] of M if for any $a, b \in M$ and $\gamma \in \Gamma, a\gamma b \in F$ implies $a, b \in F$. The intersection of all filters of a Γ -semigroup M containing a nonempty subset A of M is the filter of M generated by A. For $A = \{x\}$, let n(x) denote the filter of M generated by $\{x\}$. An equivalence relation σ on a Γ -semigroup M is called a *congruence* [2], [6] if for any $a, b, c \in M$ and $\gamma \in \Gamma, (a, b) \in \sigma$ implies $(a\gamma c, b\gamma c) \in \sigma$ and $(c\gamma a, c\gamma b) \in \sigma$. Let σ be a congruence on a Γ -semigroup M and $M/\sigma := \{(x)_{\sigma} :$ $x \in M\}$. We define $(x)_{\sigma}\gamma(y)_{\sigma} = (x\gamma y)_{\sigma}$ for all $(x)_{\sigma}, (y)_{\sigma} \in M/\sigma$ and $\gamma \in \Gamma$. It is easy to verify that the definition is well-defined and M/σ is a Γ -semigroup. A congruence σ on a Γ -semigroup M is called a *semilattice congruence* [8] if for all $a, b \in M$ and $\gamma \in \Gamma, (a\gamma b, b\gamma a) \in \sigma$ and $(a\gamma a, a) \in \sigma$. For an ideal I of a Γ semigroup M and $A \subseteq M$, the set $\langle A, I \rangle := \{x \in M : A\Gamma x \subseteq I\}$ is called the *extension* of I by A. If $A = \{a\}$, then we also write $\langle \{a\}, I \rangle$ as $\langle a, I \rangle$. For an ideal I of a Γ -semigroup M, we define equivalence relations on M as follows:

$$\sigma_I := \{(x, y) \in M \times M : x, y \in I \text{ or } x, y \notin I\},\\ \phi_I := \{(x, y) \in M \times M : \langle x, I \rangle = \langle y, I \rangle\},\\ n := \{(x, y) \in M \times M : n(x) = n(y)\}.$$

Example 1.([3]) Let $M = \{a, b, c, d\}$ and $\Gamma = \{\gamma\}$ with the multiplication defined by

$$x\gamma y = \begin{cases} b & \text{if } x, y \in \{a, b\}\\ c & \text{otherwise.} \end{cases}$$

Then M is a Γ -semigroup. We can easily get all ideals of M as follows:

$$P_1 = M, P_2 = \{c, d\}, P_3 = \{b, c\}, P_4 = \{c\}, P_5 = \{a, b, c\}, P_6 = \{b, c, d\}$$

It is easy to see that P_1 and P_2 are s-prime ideals of M, so P_1 and P_2 are semiprime ideals of M. Let

$$\begin{aligned} \sigma_1 &= M \times M, \\ \sigma_2 &= \{(a,a), (b,b), (c,c), (d,d), (a,b), (b,a), (c,d), (d,c)\}. \end{aligned}$$

It is easy to see that σ_1 and σ_2 are semilattice congruences on M.

Example 2. For $n \in \{1, 2\}$, let $M = \{n, n + 1, n + 2, \dots\}$ and $\Gamma = \{-n\}$. Then M is a Γ -semigroup under usual addition. Let $I = \{2n, 2n + 1, 2n + 2, \dots\}$. It is easy to verify that I is a semiprime ideal of M and $\sigma = \{(n, n)\}$ is a semilattice congruence on M.

The following theorem is obtained similarly in [3] and the following lemmas will be used frequently in this paper.

Theorem 1.1. If M is a Γ -semigroup, then

$$n = \bigcap_{I \in SP(M)} \sigma_I.$$

In this paper, we consider the ideal extensions in a commutative Γ -semigroup. From now on, M stands for a commutative Γ -semigroup. The next two lemmas are easy to verify.

Lemma 1.2. If A is a subset of M, then $I(A) = A \cup M\Gamma A$.

Lemma 1.3. Let I be an ideal of M and $A \subseteq B \subseteq M$. Then $\langle B, I \rangle \subseteq \langle A, I \rangle$.

Lemma 1.4. Let I be an ideal of M, $A \subseteq M$ and $\gamma \in \Gamma$. Then we have the following statements:

- (a) < A, I > is an ideal of M.
- (b) $I \subseteq \langle A, I \rangle \subseteq \langle A \Gamma A, I \rangle \subseteq \langle A \gamma A, I \rangle$.
- (c) If $A \subseteq I$, then $\langle A, I \rangle = M$.

Proof. (a) Let $x \in A, I > y \in M$ and $\gamma \in \Gamma$. Then $A\Gamma(x\gamma y) = (A\Gamma x)\gamma y \subseteq I\Gamma M \subseteq I$, so $x\gamma y \in A, I >$. Hence A, I > is an ideal of M.

(b) If $x \in I$, then $A\Gamma x \subseteq M\Gamma I \subseteq I$. Thus $x \in A, I > .$ If $x \in A, I > .$ then $(A\Gamma A)\Gamma x = A\Gamma(A\Gamma x) \subseteq M\Gamma I \subseteq I$. Thus $x \in A\Gamma A, I > .$ If $x \in A\Gamma A, I > .$ then $(A\gamma A)\Gamma x \subseteq (A\Gamma A)\Gamma x \subseteq I$. Thus $x \in A\gamma A, I > .$ Hence $I \subseteq A, I > \subseteq A\Gamma A, I > \subseteq A\Gamma A, I > \subseteq A\Gamma A, I > .$

(c) Let $A \subseteq I$ and $x \in M$. Then $A\Gamma x \subseteq I\Gamma M \subseteq I$, so $x \in A, I >$. Hence $\langle A, I \rangle = M$.

Lemma 1.5. Let I be an ideal of M and $A \subseteq M$. Then

$$\langle A, I \rangle = \bigcap_{a \in A} \langle a, I \rangle = \langle A \setminus I, I \rangle.$$

Proof. By Lemma 1.3, we have $\langle A, I \rangle \subseteq \bigcap_{a \in A} \langle a, I \rangle$. Let $x \in \bigcap_{a \in A} \langle a, I \rangle$. Then $a\Gamma x \subseteq I$ for all $a \in A$, so $A\Gamma x \subseteq I$. Thus $x \in \langle A, I \rangle$, so $\bigcap_{a \in A} \langle a, I \rangle \subseteq \langle a, I \rangle$

$$\begin{array}{l} A,I>. \mbox{ Hence } < A,I>= \bigcap_{a\in A} < a,I>. \mbox{ By Lemma 1.4 } (c), \mbox{ we have } < A,I>= \\ \bigcap_{a\in A} < a,I>=< A\setminus I,I>. \end{array}$$

Lemma 1.6. Let I be an ideal of M. Then I is a prime ideal of M if and only if $\langle A, I \rangle = I$ for all $A \not\subseteq I$.

Proof. Assume that I is a prime ideal of M and $A \not\subseteq I$. Let $x \in A, I >$. Then $A\Gamma x \subseteq I$. By hypothesis and $A \not\subseteq I$, $x \in I$. Thus $\langle A, I \rangle \subseteq I$. By Lemma 1.4 (b), $\langle A, I \rangle = I$.

Conversely, assume that $\langle A, I \rangle = I$ for all $A \not\subseteq I$. Let $A, B \subseteq M$ be such that $A \Gamma B \subseteq I$ and $A \not\subseteq I$. Then $B \subseteq \langle A, I \rangle = I$. Hence I is a prime ideal of M. \Box

We can easily prove the last lemma.

Lemma 1.7. Let \mathcal{A} and \mathcal{B} be two nonempty subfamilies of P(M) and SP(M), respectively. Then we have the following statements:

- (a) $\bigcap_{P \in \mathcal{A}} P$ is a semiprime ideal of M if $\bigcap_{P \in \mathcal{A}} P \neq \emptyset$.
- (b) $\bigcup_{P \in \mathcal{B}} P$ is a prime ideal of M.
- (c) $\bigcap_{P \in \mathcal{B}} P$ is an s-semiprime ideal of M if $\bigcap_{P \in \mathcal{B}} P \neq \emptyset$.

(d)
$$\bigcup_{P \in \mathcal{B}} P$$
 is an s-prime ideal of M.

2. Main theorems

In this section, we give some characterizations of the relationship between the extensions of ideals and some congruences in Γ -semigroups.

Theorem 2.1. Let P be a prime ideal of M and $A \subseteq M$. Then $\langle A, P \rangle$ is a prime ideal of M. Furthermore, $\langle A, \bigcap_{P > is \in P} P \rangle$ is a semiprime ideal of M if

$$\bigcap_{P\in P(M)} P\neq \emptyset$$

Proof. If $A \subseteq P$, then it follows from Lemma 1.4 (c) that $\langle A, P \rangle = M$. If $A \not\subseteq P$, then it follows from Lemma 1.6 that $\langle A, P \rangle = P$. Hence $\langle A, P \rangle$ is a prime

ideal of M. Now,

$$\begin{split} x \in < A, & \bigcap_{P \in P(M)} P > \iff A \Gamma x \subseteq \bigcap_{P \in P(M)} P \\ \Leftrightarrow & A \Gamma x \subseteq P \text{ for all } P \in P(M) \\ \Leftrightarrow & x \in < A, P > \text{ for all } P \in P(M) \\ \Leftrightarrow & x \in \bigcap_{P \in P(M)} < A, P > . \end{split}$$

Hence

$$< A, \bigcap_{P \in P(M)} P >= \bigcap_{P \in P(M)} < A, P > .$$

It follows from Lemma 1.7 (a) that $\langle A, \bigcap_{P \in P(M)} P \rangle$ is a semiprime ideal of M. \Box

Theorem 2.2. Let $A, B \subseteq M$ and $A \subseteq M\Gamma A$. Then $I(A) \subseteq I(B)$ if and only if for every ideal J of $M, \langle B, J \rangle \subseteq \langle A, J \rangle$.

Proof. Assume that $I(A) \subseteq I(B)$. Let J be an ideal of M and $x \in \langle B, J \rangle$. By Lemma 1.2, we have $A \subseteq I(B) = B \cup M\Gamma B$. For any $a \in A$, if $a = y\alpha b$ for some $y \in M, b \in B$ and $\alpha \in \Gamma$, then $a\gamma x = (y\alpha b)\gamma x = y\alpha(b\gamma x) \in M\Gamma J \subseteq J$ for all $\gamma \in \Gamma$. Hence $a\gamma x \in J$ for all $\gamma \in \Gamma$, so $x \in \langle a, J \rangle$. If a = b for some $b \in B$, then $a\gamma x = b\gamma x \in J$ for all $\gamma \in \Gamma$. Hence $a\gamma x \in J$ for all $\gamma \in \Gamma$, so $x \in \langle a, J \rangle$. Therefore $\langle B, J \rangle \subseteq \bigcap_{\alpha \in A} \langle a, J \rangle$. It follows from Lemma 1.5 that $\langle B, J \rangle \subseteq \langle A, J \rangle$.

Conversely, assume that $\langle B, J \rangle \subseteq \langle A, J \rangle$ for all ideal J of M. Then $\langle B, I(B) \rangle \subseteq \langle A, I(B) \rangle$. Since $B \subseteq I(B)$, it follows from Lemma 1.4 (c) that $\langle B, I(B) \rangle = M$. Thus $\langle A, I(B) \rangle = M$, so $M\Gamma A \subseteq I(B)$. Hence $A \subseteq M\Gamma A \subseteq I(B)$. This implies that $I(A) \subseteq I(B)$.

Theorem 2.3. If I is an s-semiprime ideal of M, then ϕ_I is a semilattice congruence on M.

Proof. Let $(x, y) \in \phi_I, c \in M$ and $\gamma \in \Gamma$. Then $\langle x, I \rangle = \langle y, I \rangle$. Thus

$$\begin{array}{lll} a \in < x\gamma c, I > & \Leftrightarrow & (x\gamma c)\Gamma a \subseteq I \\ & \Leftrightarrow & x\Gamma(c\gamma a) \subseteq I \\ & \Leftrightarrow & c\gamma a \in < x, I > \\ & \Leftrightarrow & c\gamma a \in < y, I > \\ & \Leftrightarrow & y\Gamma(c\gamma a) \subseteq I \\ & \Leftrightarrow & (y\gamma c)\Gamma a \subseteq I \\ & \Leftrightarrow & a \in < y\gamma c, I > . \end{array}$$

Hence $(x\gamma c, y\gamma c) \in \phi_I$. Similarly, we can show that $(c\gamma x, c\gamma y) \in \phi_I$. Hence ϕ_I is a congruence on M. Let $x \in M$ and $\gamma \in \Gamma$. Then

$$\begin{aligned} a \in < x\gamma x, I > &\Rightarrow (x\gamma x)\Gamma a \subseteq I \\ &\Rightarrow (x\gamma x\Gamma a)\Gamma a \subseteq I\Gamma M \subseteq I \\ &\Rightarrow (x\Gamma a)\gamma(x\Gamma a) \subseteq I \\ &\Rightarrow x\Gamma a \subseteq I \\ &\Rightarrow a \in < x, I > . \end{aligned}$$

Thus $\langle x\gamma x, I \rangle \subseteq \langle x, I \rangle$. By Lemma 1.4 (b), $\langle x, I \rangle \subseteq \langle x\gamma x, I \rangle$. Hence $\langle x\gamma x, I \rangle = \langle x, I \rangle$, so $(x\gamma x, x) \in \phi_I$. Therefore ϕ_I is a semilattice congruence on M.

Theorem 2.4. If I is an s-prime ideal of M, then $\phi_I = \sigma_I$ and $n \subseteq \phi_I$.

Proof. Let $(x, y) \in \phi_I$. Then $\langle x, I \rangle = \langle y, I \rangle$. Suppose that $(x, y) \notin \sigma_I$. Without loss of generality, we may assume that $x \in I$ but $y \notin I$. By Lemma 1.4 (c) and Lemma 1.6, we have $\langle x, I \rangle = M$ and $\langle y, I \rangle = I$. Thus I = M, so $y \notin M$. This is a contradiction. Hence $(x, y) \in \sigma_I$, so $\phi_I \subseteq \sigma_I$. Let $(x, y) \in \sigma_I$. If $x \in I$, then $y \in I$. By Lemma 1.4 (c), $\langle x, I \rangle = M = \langle y, I \rangle$. If $x \notin I$, then $y \notin I$. By Lemma 1.6, $\langle x, I \rangle = I = \langle y, I \rangle$. Hence $(x, y) \in \phi_I$, so $\sigma_I \subseteq \phi_I$. Therefore $\phi_I = \sigma_I$. It follows from Theorem 1.1 that

$$n = \bigcap_{J \in SP(M)} \sigma_J = \bigcap_{J \in SP(M)} \phi_J \subseteq \phi_I.$$

Hence the proof is completed.

Acknowledgment. The authors would like to thank the referees for the useful and helpful suggestions.

References

- A. Iampan and M. Siripitukdet, On minimal and maximal ordered left ideals in po-Γ-semigroups, Thai Journal of Mathematics, 2(2004), 275-282.
- [2] A. Seth, Idempotent-separating congruences on inverse Γ-semigroups, Kyungpook Mathematical journal, 37(1997), 285-290.
- [3] M. Siripitukdet and A. Iampan, On the least (ordered) semilattice congruences in ordered Γ-semigroups, Thai Journal of Mathematics, 4(2006), 403-415.
- [4] M. K. Sen, On Γ-semigroups, Proceedings of the International Conference on Algebra and it's Applications, Decker Publication, New York 301.
- [5] M. K. Sen and N. K. Saha, On Γ-semigroup I, Bulletin of the Calcutta Mathematical Society, 78(1986), 180-186.

- [6] M. K. Sen and N. K. Saha, Orthodox Γ-semigroups, International Journal of Mathematics and Mathematical Sciences, 13(1990), 527-534.
- [7] N. K. Saha, On Γ-semigroup II, Bulletin of the Calcutta Mathematical Society, 79(1987), 331-335.
- [8] Y. I. Kwon, The filters of the ordered Γ-semigroups, Journal of the Korea Society of Mathematical Education Series B: The Pure and Applied Mathematics, 4(1997), 131-135.