• Title/Summary/Keyword: S-doping

Search Result 692, Processing Time 0.034 seconds

Solvent Effects on the Charge Transport Behavior in Poly(3,4-ethylenedioxythiophene) Synthesized with Iron (III) -p-toluenesulfonate (Iron(III)-p-toluenesulfonate로 합성된 Poly(3,4-ethylenedioxythiophene)의 전하전달현상에 미치는 유기용매의 영향)

  • Park, Chang-Mo;Kim, Tae-Young;Kim, Won-Jung;Kim, Yun-Sang;Suh, Kwang-S
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.363-367
    • /
    • 2005
  • The effects of organic solvent on the charge transport behavior of poly (3,4-ethylenedioxythioph one)/p-toluene-sulfonate(PEDOT-OTs) are investigated. The use of different organic solvents during the oxidative chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) with Iron(III) -tosylate can greatly vary the DC conductivity of PEDOT-OTs along with molecular structure and doping concentration. For example, PEDOT-OTs prepared from methanol shows the conductivity of 19.5 S/cm, which is an increase by a factor of $10^8$ compared to PEDOT-OTa prepared from acetone. From the X-ray diffraction (XRD) experiments, it was found that PEDOT-OTs with ketone is amorphous state, while PEDOT-OTs with alcoholic solvent shows the better defined crystalline structure in which the charge transport along and between the PEDOT chains are promoted. Chemical analysis employing X-ray photoelectron spectroscopy (XPS) revealed that the doping concentration of PEDOT-OTs with alcoholic solvent is much higher than that of PEDOT-OTs with ketones. It is proposed that the interactions between the organic solvent and doping anion can cause the variation in doping concentration and, therefore, result in the PEDOT-OTs of different conductivities and chain structures.

Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

유기태양전지와 유기발광다이오드에 적용 In-Mo-O 투명 전극의 특성 연구

  • Sin, Yong-Hui;Na, Seok-In;Kim, Jang-Ju;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.535-536
    • /
    • 2013
  • 본 연구에서는 DC/RF co-sputtering공법을 통해 제작한 In-Mo-O 투명 Mo doping 농도 및 열처리 온도에 따른 전기적, 광학적, 구조적 특성을 분석하고, 최적화된 In-Mo-O 투명전극을 유기태양전지(OPVs)와 유기발광다이오드(OLED)에 적용하여 그 가능성을 평가하였다. Mo doping 농도는 co-sputtering 공정 중 MoO3에 인가되는 radio-frequency (RF) power를 변화시켜 조절되었으며, 투명전극의 광학적 특성 및 전기적 특성 향상을 위해 성막 공정 후 급속 열처리 공정을 온도 별로 진행하였다. In-Mo-O 투명 전극은 Mo 도핑 농도에 영향을 받음을 확인할 수 있었고, 최적화된 Mo doping 파워에서 성막한 In-Mo-O 박막은 급속 열처리 공정 후 면저항 24.57 Ohm/square, 투과도 81.57% (400~1,200 nm wavelength)를 나타내었다. Bulk hetero-junction 기반의 고효율 유기태양전지와 유기발광다이오드 적용하기 위해 본 연구에서 제작된 IMO 투명전극의 구조적 특성, 결정성 및 표면특성은 x-ray diffraction (XRD), atomic force microscopy(AFM), field effect scanning electron microscopy (FE-SEM), High-resolution transmission electron microscopy (HRTEM) 분석을 통해 진행하였다. In-Mo-O 투명 전극상에 제작된 OLEDs와 OPV는 reference ITO 전극에 제작된 OLEDs/OPV와 비교할 때 유사하거나 향상된 특성을 나타내었으며 이는 In-Mo-O 박막이 OLED/OPV용 투명 전극으로 적용이 가능함을 말해준다.

  • PDF

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.

Analytical Characterization of a Dual-Material Double-Gate Fully-Depleted SOI MOSFET with Pearson-IV type Doping Distribution

  • Kushwaha, Alok;Pandey, Manoj K.;Pandey, Sujata;Gupta, Anil K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.110-119
    • /
    • 2007
  • A new two-dimensional analytical model for dual-material double-gate fully-depleted SOI MOSFET with Pearson-IV type Doping Distribution is presented. An investigation of electrical MOSFET parameters i.e. drain current, transconductance, channel resistance and device capacitance in DM DG FD SOI MOSFET is carried out with Pearson-IV type doping distribution as it is essential to establish proper profiles to get the optimum performance of the device. These parameters are categorically derived keeping view of potential at the center (${\phi}_c$) of the double gate SOI MOSFET as it is more sensitive than the potential at the surface (${\phi}_s$). The proposed structure is such that the work function of the gate material (both sides) near the source is higher than the one near the drain. This work demonstrates the benefits of high performance proposed structure over their single material gate counterparts. The results predicted by the model are compared with those obtained by 2D device simulator ATLAS to verify the accuracy of the proposed model.

Optimizing of Diffusion Condition in Spin on Doping for c-Si Solar Cell (스핀 도핑을 이용한 단결정 실리콘 태양전지 확산 공정 최적화)

  • Yeo, In Hwan;Park, Ju Eok;Kim, Jun Hee;Cho, Hae Sung;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.410-414
    • /
    • 2013
  • Rapid thermal processing (RTP) abruptly decreases the time required to perform solar cell processes. RTP were used to form emitter of crystalline silicon solar cells. The emitter sheet resistance is studied as a function of time and temperature. The objective of this study is reduction of doping process time with same performance. Emitter difRapid thermal dfusion was carried out by using a spin on doping and a RTP. iffusion was performed in the temperature range of $700{\sim}750^{\circ}C$ for 1m 30s~15 m. Thermal budgets yielded a $50{\Omega}/sq$ emitter using a P509 source. To reduce process time and get high efficiency, rapid thermal diffusion by IR lamp was employed in air atmosphere at $700^{\circ}C$ for 15 m.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Concentration (채널도핑강도에 대한 이중게이트 MOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.579-584
    • /
    • 2012
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping concentration.

Achieving Robust N-type Nitrogen-doped Graphene Via a Binary-doping Approach

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.192.2-192.2
    • /
    • 2014
  • Among various dopant candidates, nitrogen (N) atoms are considered as the most effective dopants to improve the diverse properties of graphene. Unfortunately, recent experimental and theoretical studies have revealed that different N-doped graphene (NGR) conformations can result in both p- and n-type characters depending on the bonding nature of N atoms (substitutional, pyridinic, pyrrolic, and nitrilic). To overcome this obstacle in achieving reliable graphene doping, we have carried out density functional theory calculations and explored the feasibility of converting p-type NGRs into n-type by introducing additional dopant candidates atoms (B, C, O, F, Al, Si, P, S, and Cl). Evaluating the relative formation energies of various binary-doped NGRs and the change in their electronic structure, we conclude that B and P atoms are promising candidates to achieve robust n-type NGRs. The origin of such p- to n-type change is analyzed based on the crystal orbital Hamiltonian population analysis. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

The Study of Mutation Spectrum in Iac / Gene of Transgenic Big Blue$\textregistered$ Cell Line Following Short-Term Exposure to 4-Nitroquinoline N-oxide

  • Youn, Ji-Youn;Kim, Kyung-Ran;Cho, Kyung-Hea;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.64-64
    • /
    • 1996
  • Transgenic animal and cell line models which are recently developed in toxicology field combined with molecular biological technique, are powerful tools for studying of mutation in vivo and in vitro, respectively. The Big Blue mutagenesis assay system is one of the most widely used transgenic systems. Especially, for the study of direct acting mutagens, Big Blue cell line is very useful and powerful to evaluate mutagenicity because the mutation frequency and mutationspectrlun showed no distinct differences between cell line and animal. The Big Blue cell lines carry stably integrated copies of lambda shuttle vector containing lac I gene as a mutational target. These lambda shuttle vectors are useful for various mutagenesis related studies in eukaryotic system due to their ability to be exposed mutagen and then transfer a suitable target DNA sequence to it convenient organism for analysis. We tried to assess the mutagenic effect of 4-NQO with Big Blue cell line. After the treatment of 4-NQO, genomic DNA was isolated and lambda shuttle vector was packaged by in Vitro packaging and then these were plated on bacterial host in the presence of X-gal to screen mutation in the lac I. We determined MF as a ratio of blue plaques versus colorless plaques and now undergoing the mutation spectrum of 4-NQO in lac J gene sequence.

  • PDF

Characteristics of in-situ doped polycrystalline 3C-SiCthin films for M/NEMS applications (In-situ 도핑된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.325-328
    • /
    • 2008
  • This paper describes the electrical properties of poly (polycrystalline) 3C-SiC thin films with different nitrogen doping concentrations. In-situ doped poly 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and $0{\sim}100$ sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in poly 3C-SiC thin films grown on $SiO_2/Si$ substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of poly 3C-SiC thin films decreased from $8.35{\Omega}{\cdot}cm$ with $N_2$ of 0 sccm to $0.014{\Omega}{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819{\times}10^{17}$ to $2.2994{\times}10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to $29.299cm^2/V{\cdot}S$, respectively.