• Title/Summary/Keyword: Rubber mount

Search Result 156, Processing Time 0.022 seconds

Noise and Vibration Analysis of a cylindrical shell by controlling ER mount (ER마운트 제어에 의한 원통셸의 진동소음 해석)

  • Jung, Woo-Jin;Jung, Weui-Bong;Seo, Young-Soo;Cho, Hyun-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.348.2-348
    • /
    • 2002
  • ER mount is often used instead of rubber mount in cylindrical shell to improve the vibration and noise performanec. The noise radiated by cylindrical shell will be reduced by reducing the force transmitted to the cylindrical shell through ER mount. In this paper, LQ control theory is used to reduce the transmitted force to the cylindrical shell. The finite element method of cylindrical shell is formulated by NASTRAN and its vibrating shape is calculated in frequency domain. (omitted)

  • PDF

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

A Study on the Design Technology for Automobile Front Subframe Module (자동차 프런트 서브프레임 모듈 설계기술에 대한 연구)

  • Choe, Byeong-Ik;Kim, Wan-Du;Lee, Hak-Ju;Gang, Jae-Yun;Kim, Jeong-Yeop;U, Chang-Su;Han, Seung-U;Kim, Ju-Seong;Kim, Gi-Ju
    • 연구논문집
    • /
    • s.32
    • /
    • pp.85-94
    • /
    • 2002
  • Even in the world wide automobile companies where a few simple modules are put into practical use, the front subframe modules of which performances of durability, NVH and crash are significantly important are under planing. In this study, design technology for the automobile front subframe module, which consists of an engine, a transmission and steering parts, structural components (frame, upper arm, lower arm and brake etc.) and rubber components(engine mount, axle mount and rubber disc etc.), was developed. A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of the front subframe module. Strain-life fatigue database system and expert system for fatigue properties of welded materials were developed. Stiffness values of the various rubber bushes mounted on the front subframe were evaluated by experimental method and FEM. TWB(Tailor Welded Blank) technology was applied to forming the cross member of the front subframe. Performance evaluations in relation to NVH and crash were conducted by using CAE technologies.

  • PDF

Performance Evaluation on an Active Hybrid Mount System for Naval Ships Using Piezostack Actuator (압전작동기를 이용한 함정용 능동 하이브리드 마운트 시스템의 진동제어 성능평가)

  • Quoc, Nguyen Vien;Choi, Seung-Boh;Oh, Jong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.77-82
    • /
    • 2010
  • In this work, a new active hybrid mount featuring piezostack actuator and rubber element is proposed, and its vibration control performance is evaluated by applying a robust frequency-shaped sliding mode controller. After describing the configuration of the proposed mount, vibration control performances are experimentally evaluated. A mount system with four active hybrid mounts is then constructed. To attenuate vibrations on the supported mass, a frequency-shaped sliding mode controller is designed and implemented to the system. Finally, control performances are obtained and presented in time and frequency domains via computer simulation.

  • PDF

Performance Evaluation on an Active Hybrid Mount System for Naval Ships Using Piezostack Actuator (압전작동기를 이용한 함정용 능동 하이브리드 마운트 시스템의 진동제어 성능 평가)

  • Quoc, Nguyen Vien;Choi, Seung-Boh;Oh, Jong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • In this work, a new active hybrid mount featuring piezostack actuator and rubber element is proposed, and its vibration control performance is evaluated by applying a robust frequency-shaped sliding mode controller. After describing the configuration of the proposed mount, vibration control performances are experimentally evaluated. A mount system with four active hybrid mounts is then constructed. To attenuate vibrations on the supported mass, a frequency-shaped sliding mode controller is designed and implemented to the system. Finally, control performances are obtained and presented in time and frequency domains via computer simulation.

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-Vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.511-517
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

  • PDF

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

Reduction of airborne and structure-borne noise of naval ship pump (함정용 펌프의 공기음 및 고체음저감)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.942-947
    • /
    • 2002
  • In this study, reduction of airborne and structure-borne noise of naval ship pump is presented. Since piping system arrangement such as valve location, flexible joint, pipe diameter and elbow location, discharge basin affect greatly on the noise measurement, care must be taken to minimize the unnecessary noise from the piping system. It is shown that structure-borne noise of the motor with single resilient mount system exceeds criterion. Therefore, it is concluded that double resilient mount system is inevitable. Two kinds of mount is studied for upper mount; spring and rubber type. Although both mounts show good performance at low frequency including rpm frequency, 63Hz, spring mount is found to be inadequate at high frequency, because spring coil acts as a path for SBN.

  • PDF

Development of stiffness adjustable mount for vibration control of marine diesel generator set (박용 발전기세트 진동 제어를 위한 강성 조절형 마운트 개발)

  • Kim, W.H.;Joo, W.H.;Kim, D.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.89-92
    • /
    • 2012
  • Marine diesel generator(D/G) set which is supported with resilient mounts for vibration isolation has been experienced the resonance problem by the main engine or propeller excitations and rigid body modes. Then the avoidance of resonance is difficult because the several excitations and 6 rigid body modes have to be considered simultaneously. In this paper, stiffness adjustable mounts was developed and proposed to control the natural frequencies of installed D/G set. Operating concept of the mount is that the total stiffness of mount can be changed according to the engagement of secondary rubber element in addition to primary one. The performance of mount was verified with the test rig and actual experiment in D/G set.

  • PDF

Lifetime prediction of the engine mount about the environment temperature variation (환경 온도변화에 대한 자동차용 엔진마운트의 수명 예측)

  • Kim, Hyung Min;Wei, Shin Hwan;Yoon, Sin Il;Shin, Ik Jae;Kim, Gyu Ro
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.65-76
    • /
    • 2013
  • In order to assess the reliability of engine mount for a vehicles, life test model and procedure are developed. By using this method, failure mechanism and life distribution are analyzed. The main results are as follows; i) the main failure mechanism is degradation failure of engine mount rubber by fatigue failure at dynamic load. ii) temperature is a second factor to affect a failure. iii) the life distribution of engine mount module is fitted well to Weibull life distribution and the shape parameter is 18.4 and the accelerated life model of that is fitted well to Arrhenius model.