International Journal of Automotive Technology, Vol. 8, No. 6, pp. 731-744 (2007)

Copyright © 2007 KSAE
1229-9138/2007/037-08

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR

POWERTRAIN MOUNTING SYSTEMS

W.-B. SHANGGUAN"" and Y. ZHAO?

UCollege of Automotive Engineering, South China University of Technology, Guangzhou 510641, China
“National CIMS Engineering Research Center, Tsinghua University, Beijing 100084, China

(Received 23 February 2007; Revised 19 October 2007)

ABSTRACT-A method for dynamic analysis and design calculation of a Powertrain Mounting System (PMS) including
Hydraulic Engine Mounts (HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency
vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the
crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to
rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements
in its Local Coordinate System (LCS). The relation between force and displacement of each mount in its LCS is usually
nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of
the powertrain center of gravity (C.G.) under static or quasi-static load is developed using Newton’s second law, and an
iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the
powertrain under ground and engine shake excitations is derived using Newton’s second law. Formulae for calculating
reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber
mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated
displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the
displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using
the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the
reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis
of the proposed methods.
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NOMENCLATURE

&

K. : complex stiffness of a mount

K : storage stiffness of a mount

K" : loss stiffness o f a mount

K; : dynamic stiffness of a mount

¢ : loss angle of a mount

C : damping coefficient of a mount
GCS : global coordinate system

LCS :local coordinate system of a mount

k. k., k., - static stiffness of the th mount in its LCS

X;, Vi, Z; - location of the th mount in GCS.

k. ,k,  k," : storage stiffness of a mount in its LCS

k.. k)" k,” :loss stiffness of a mount in its LCS

Lts Iyg Iz, Iy Iyz, Iy - inertia properties of the powertrain
in GCS
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1. INTRODUCTION

A powertrain (an engine and a transmission) mounting
system (PMS) generally consists of a powertrain (engine
and gearbox) and several mounts connected to a base
structure (Yu et al., 2001). A mount used in PMS is
usually a rubber mount (rubber boned to metal), or a
hydraulic engine mount (HEM). The force versus dis-
placement relation (F-D relation for short) of a rubber
mount or an HEM is determined by its rubber compo-
nents. The dynamic stiffness and loss angles of the two
kinds of mounts under low-frequency and large-ampli-
tude excitations are quite different (Yu et al., 2001). One
advantage of an HEM is that it can provide large damping
around a frequency value (Shangguan and Lu, 2004).
Motion control and vibration isolation of a powertrain are
very common and important engineering design problems
in automobiles and ships (Tao er al, 2000). The
challenge in designing a PMS is to select the appropriate
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static and dynamic properties of the mounts and to install
them properly to control powertrain motion, and to
minimize the forces transmitted to the base structures,
such as mount brackets and the car body. Unlike normal
application inbuilding, a PMS in an automobile or ship
engine can react to the strong quasi-static forces caused
by cornering loads, impacts from road unevenness, wave
slats, etc. (Tao et al., 2000). Thus, a large static stiffness
of mounts must be designed to keep the powertrain
within the limits if the F-D relation of a mount in three
directions of its local coordinate system (LCS) is linear.
This will increase the forces transmitted to the structure.
Thus, relation between the force and the displacement of
a mount in its LCS is usually thought to be nonlinear and
is simplified as piecewise linear.

In recent years, four-cylinder engines and transversely
mounted powertrains, which worsen the influences of the
powertrain vibration on the car body, have been widely
used for cars. In controlling low-frequency vibrations of
a powertrain, two kinds of excitations need to be consi-
dered. One is from the ground excitation, and another is
due to the output torque changes in the engine. These two
kinds of excitations are low-frequency and large-am-
plitude excitations and tend to excite larger vibrations of
a powertrain. To control the vibration, the engine mount
must be stiff and highly damped under the two kinds of
excitations. However, when comparing dynamic perfor-
mances of an HEM with its rubber mount, that the
dynamic stiffness and damping of a rubber mount are
nearly invariant with excitation amplitude and frequency
over a range of 1 to 250 Hz (Shangguan and Lu, 2004).
Consequently, at present, mamufacturers have increasing-
ly used an HEM in a PMS, which can provide large
damping around a frequency under low-frequency and
large-amplitude excitations. An HEM is selected mainly
to control vibrations of a powertrain in pitch or bounce
modes. Here, the pitch mode of the powertrain is defined
as a mode rotating around the crankshaft of the engine for
a transversely mounted powertrain.

There is a substantial body of literature dealing with
the dynamic analysis and design calculation methods for
a PMS (Bernard and Starkey, 2003; Brach, 1997; Cho,
2000; Geck and Patton, 1984; Johson and Subhedar,
1979; Qatu er al, 2002; Shangguan and Lu, 2004;
Swanson et al., 1993; Suh et al., 2003; Snyman et al.,
1995; Tao et al., 2000 Vietor et al., 1997; Yu et al., 2001;
Zavala et al., 2000). In modeling a PMS, the powertrain
is usually regarded as a rigid body and is supported by
three or four mounts fixed to a rigid floor (Johson and
Subhedar, 1979; Cho, 2000; Suh er al., 2003). Most
papers focus on selecting the stiffness, location and
orientation of individual mounts by decoupling the pitch
mode of a powertrain and locating the six frequencies of
a powertrain rigid mode in the prescribed ranges (Johson,

Subhedar, 1979; Cho, 2000), or by minimizing the forces
transmitted to the structure (Suh ez al., 2003). In calcu-
lating displacements of a powertrain’scenter of gravity
(C.G)) under static or quasi-static loads, most studies are
conducted based on the assumption that the F-D relation
of a mount in its LCS is linear (Brach, 1997; Swanson et
al., 1993). To the best of our knowledge, there is no
method forestimating displacements of the powertrain
C.G. when the F-D relation of a mount in its LCS is
regarded as nonlinear and can be simplified as piecewise
linear.

In analyzing low-frequency vibrations of a powertrain
under dynamic force and torque excitations, most studies
have regarded the mounts in a PMS as rubber mounts
(Tao et al., 2000 Swanson et al., 1993). An analysis and
design method was developed by Ishihama er al. to
control powertrain vibrations in pitch and bounce modes
during low-frequency vibrations (Ishihama et al., 1995).
They used a simple model with two degrees of freedom
(DOF) to simulate the vibration characteristics of a PMS.
Two HEMs or one HEM plus one rubber mount were
used in the model to demonstrate the effectiveness of
using HEMsfor controlling low-frequency vibrations of
the powertrain in the pitch and bounce modes. However,
the 2 DOF model seems too simple to simulate the
performance of a generic PMS since the powertrain can
move in six directions (three translation and three angle
displacements) and the movements are possibly coupled.
Therefore the chief objectives of this paper are to develop
an analysis and design method for estimating the dis-
placements of a powertrain C.G. when the F-D relation of
a mount in its LCS is nonlinear and can be simplified as
piecewise linear. Furthermore, the study aims to devise a
design calculation method for a PMS using HEMs to
control powertrain vibrations in bounce and pitch modes.
A simplified 6 DOF model for'a PMS is used in this
paper. The model regards the powertrain as a rigid body
that can move in six directions. The powertrain is sup-
ported by four mounts (four rubber mounts or two rubber
mounts and two HEMs) fixed to a rigid structure.

2. POWERTRAIN MOUNTING SYSTEM
EQUATIONS

2.1. Modeling of a PMS

The configuration of a PMS is shown in Figure 1(a). As
the figure shows, a PMS consists of a powertrain and
three or four mounts. The mounts used in a PMS are
usually rubber mounts and /or HEMs. One end of a
mount connects to the powertrain and another end
connects to the car body or subframe. Figure 1(b) shows
a simplified 6 DOF model. In modeling a PMS, the
powertrain is regarded as a rigid body supported by three
or four mounts, and can move in six directions. A mount
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Figure 1. The configuration and the simplified 6 DOF model of a PMS.

is simplified as spring and damping elements in three
orthogonal directions (Tao et al., 2000; Qatu et al., 2002;
Swanson et al., 1993; Snyman et al., 1995). The end
where the mountsconnects to the car body or subframe is
assumed to be fixed to a rigid structure as shown in
Figure 1(b). Although some researchers established a
complex PMS model including the flexibility of base
structures (Demic, 1990), the conclusion obtained by
Sirafi and Qatu (Sirafi and Qatu, 2003) suggested that the
6 DOF model including rigid base structures is good
enough to analyze dynamic performances of PMS in the
preliminary design phase.

A right-hand Global Coordinate System (GCS), G-
XYZ, which has its origin at the C.G: of the powertrain in
its static equilibrium, is built to describe the movements
of the powertrain. Here, the static equilibrium is defined
as the position of the powertrain at rest under its dead
weight. The three orthogonal coordinate axes are set with
X- and Y- axes parallel to the horizontal plane, Z- axis
normal to the plane, and the positive direction of X- axis
points to the rear of a vehicle. A LCS, Q-uv;x; is built for
each mount, where the origin is at the connecting point of

K, 0 c d

k11

Figure 2. F-D relation of a mount in one direction of its
LCS.

the mount and the powertrain, and the three coordinate
axes are expressed by u;, v, and w, (i=1,2,... n, where n is
the number of mounts), respectively, which are perpendi-
cular to one another.

The static performances (F-D relation) of either a
rubber mount or an HEM are determined by its rubber
components (Shangguan and Lu, 2004). The relation
between force and displacement for a mount in one
direction of its LCS is usually nonlinear (Brach, 1997)
and can be simplified as piecewise linear. Figure 2 shows
the piecewise linearity at five ranges. If it is simplified
with three ranges, the stiffness in ranges two (k,) and four
(k.) equal the stiffness in the linear range (ks). In Figure 2,
points Py, P,, P, and P, are tuning points, in which P, and
P, are defined as hard stop points and P, and P, are as the
soft ones. The values a, b, ¢ and d are x-coordinates of the
hard or the soft points. The parameters k,, k,, ks, k, and k;
are stiffness values in corresponding ranges.

Complex stiffness (K:) is used to characterize the
dynamic behavior of a mount in u-, v- and w;- directions
of its LCS and is defined by (Shangguan and Lu, 2004).

K.=K'+jK” 1

where K’ and K" are storage stiffness and loss stiffness,
respectively. The dynamic stiffness, K, loss angle, ¢, and
damping coefficient, C, of a mount are calculated from
(Shangguan and Lu, 2004).

K=JK+ K7, g=tan” (K'/K), c=’%¢ @)

where f is the excitation frequency.

Dynamic performances of a rubber mount and an
HEM under low-frequency and large-amplitude excita-
tions are quite different, and the performance compari-
sons of an HEM and its rubber spring can be found in the
paper (Shangguan and Lu, 2004). One advantage of an
HEM is that it can provide peak damping around a frequ-
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Table 1. Values for k and A

range k A
Range 1 (-eo, a] k, —k,a+k,(a-b)+k,b
Range 2 (a, b] k, —k,b+k;b
Range 3 (b, c] ks 0
Range 4 (c, d] k, kic-k,c
Range 5 (d, +eo) ks kyc-k,c+k,d-ksd

ency value, which can decrease the vibration amplitude
of a powertrain very quickly.

2.2. Equations for Calculating Displacements of the
Powertrain C.G. under Static Loads
For calculating the displacement of a powertrain C.G
under static or quasi-static forces, only static properties of
a mount are needed. The static stiffness of the mount i
(i=1,2,...... n, where 7 is the number of mounts) in u-, v-
and w;- directions of its LCS are represented by k., k,; and
k.., respectively.

The F-D relation shown in Figure 2 is described
mathematically by Equation (3)

F=kx+A 3)

where k and A are stiffness and correction term, and their
values can be obtained with formulae in Table 1 when
displacement, x, is determined.

The F-D relation of the mount { in its LCS is written as

fi=kiﬁi +A 4

where ki=diag (k,, k., k) is the static stiffness matrix of
the mount i in its LCS; U; and f; are the displacement and
force vectors of the mount i in its LCS; A, is the
correction vector and is expressed as A=(A,, A,, A,
where A,;, A,; and A, are correction terms of the mount i
in u-, v- and w;- directions. The components in k; and A,
can be obtained with the formulae in Table 1 according to
the components in U;.

To express the F-D relation of a mount in GCS, one
gets

Fi=K;U+A,A, &)
where
Ki=AKA/ (6)

is the stiffness matrix of the mount i in GCS; U, and F; are
the displacement and force vectors of the mount i in
GCS, respectively; A, the transformation matrix from
LCS of the mount i to GCS. The transformation matrix
can be easily formed from the orientations of the mount
with respect to GCS (Haug, 1989), which can be defined
using Euler angles or direction cosines, etc.

The transformation of powertrain C.G,, X, to the trans-

lation displacement at the mounting point in GCS can be
written as (Haug, 1989)

U=[I -r1X Q)

where I is the (3x3) unity matrix; ¥; is the (3x3) skew-
symmetric matrix of the mount i position vector, r;, with
respect to powertrain C.G;; that is, given

I‘i=x,-? + y; + Z,‘]AC (8)

the skew-symmetric matrix, ¥;, is expressed as (Haug,
1989)

. 0 -z Y:
r=|z; 0 —x; (9)
-y % 0

where x, y; and z; are locations of the mount i in GCS.
Substituting Equation (7) into Equation (5), one gets
Fi=[K: —K:f'i]X+AiAi (10)

In terms of a powertrain displacement, the transmitted
force vector to the powertrain from the force F; is

RFM=-F=—[Ki -K{F.]X-AA (11)
The moment vector, RMM;, which results from the force
vector of mount i, RFM;, on the powertrain C.G. is
RMM;=r; x RFM;=F,RFM;

=[FK; K F1X-FAA (12)
Combining Equations (11) and (12) yields
EFM;={RFM;, RMM,}’

K 3 AN
=% K X—{J } (13)
f'i Ki _i:i Ki i;i r; AiAi

where EFM, is defined as a generalized load vector
resulting from the mount i which encompasses both
forces and moments of the powertrain C.G in all six
DOFs.

By summing all of the forces from a total of » mounts,
the total load vector on the powertrain C.G. can be
expressed as

> K Y K. > AN
i iz i= i=1
EFM=) EFM,= ' ' X-1
Y FK -Y FKE, AL

(14)

With all the components of reactive forces derived in
terms of the displacements of powertrain C.G., the
equation for analyzing the powertrain motion under static
or quasi-static loads can be obtained using Newton’s
second law
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K X=EF-Delta (15)

where

n n
YK =Y K
i=1 i=1

K= (16)

n

n
Y ¥K Y FKF
i=1

i=1

> AN
i=1

Delta= (17)
D AN
i=1

The vector EF in Equation (15) represents the external
static or quasi-static force vector applied to the
powertrain C.G..

2.3. Equations for Dynamic Response Analysis of a
Powertrain

Based on Equation (1), the complex stiffness matrix of
the mount i in its LCS, ki, can be written as

. ku, +jku”
Kkia= k) + jk,” (18)
kwl+jkwl/

where k,”, k,”, and k,” are the storage stiffness of the
mount 7 in u-, v- and w,- directions of its LCS, respec-
tively; k,”, k,” and k,” are losses stiffness of the mount
iin u-, v~ and w,- directions of its LCS, respectively.

This complex stiffness matrix must be transformed
from LCS of the mount to GCS through the following
linear transformation:

Kia=A kAl (19)

where A, is the transform matrix defined in Equation (6).

In deriving dynamic response equations of a power-
train, two kinds of excitations must be considered. One is
from the ground in the three translation directions of
GCS, but the excitation from the vertical direction is
usually dominant. Another is due to the changes of the
powertrain output torque. The two kinds of excitations
tend to make the powertrain vibrate in bounce and pitch
directions. Assuming the displacement excitation to
mount i from the rigid structure in GCS is U, the
displacement excitation to the mount in its LCS, Usga , 18
then estimated by

[_Jigd=AiTUig (20)
The force of mount i in GCS, Fy, is then calculated by
Fid=K:dUi+Aid 2n

where A;4 is a correction vector and is expressed as

Aid=—K:dUig (22)

By using the similar approaches in Section 2.2 and
Newton’s second law, the dynamic equations of a power-
trainare obtained and written as

MX,+KX=F+F, (23)

where

n n
YKy - Kulf
i=1 i=1

K= (24)

(25)

The complex stiffness matrix, K,, in Equation (24) is
calculated based on complex stiffness matrix of the
individual mount i, Kj;, and the location of mount i. The
mass matrix M is a 6x6 constant matrix consisting of
inertia properties of a powertrain (Swanson et al., 1993);
Xe={x, , z, 6. 8, 6.} is the dynamic displacement vector
of the powertrain C.G; F is a 6x1 vector of excitation
force induced by the torque changes; F, is a 6x1
excitation force vector induced by the displacement
excitation from the rigid structure.

3. SOLUTIONS TO THE EQUATIONS

3.1. Iterative Algorithms for Solving Displacements of a
Powertrain under Static or Quasi-static Loads
In obtaining displacements of a powertrain C.G. under
static and quasi-static loads, the rigid structure is assumed
to be fixed. Since the component values in stiffness, K, in
Equation (16) depend on the magnitude of external
forces, iterative algorithms must be used to determine the
displacements of the powertrain C.G. The steps are
described as follows.

Step 1: Calculate displacements of each mount in its
LCS under the powertrain weight load.
The displacements of each mount in its LCS should be in
linear range and the Delta in Equation (15) should be
zero under the powertrain weight. The displacements of
powertrain C.G. are obtained by constituting Equation
(15) and then solving the equation. The displacement
vector of each mount in its LCS, U;, is then calculated
with Equations (15), (7) and (26).

[—Ji=AiTUi (26)

Step 2: Move the origin of the F-D relation curve in
Figure 2 for each mount in its LCS to the point where the
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displacement of a mount in its LCS is equal to that
obtained in step 1.

Step 3: Apply external forces to powertrain C.G. in one
loading condition and calculate the displacements of
powertrain C.G. by solving Equation (15), assuming the
displacements of each mounts in its LCS are in linear
ranges.

Step 4: Get the displacements of each mount in its
LCS using Equations (7) and (26).

Step 5: Check the displacements of each mount
obtained in step 4 to see if they are in the linear range. If
yes, output the actual displacements and then stop. The
actual displacements of each mount in its LCS under the
load result from a summation of the calculated displace-
ment in step 4 and the displacement estimated in step 1; if
no, record the ranges where the displacements are
located, and then go to next the step.

Step 6: Constitute the new matrices of k; and A, in
Equation (4) with the range data in step 5 and the
formulae in Table 1, and then form the stiffness matrix,
K, and correction vector, Delta, by using Equations (16)
and (17), respectively.

Step 7: Find the displacements of powertrain C.G. by
solving for newly formed Equation (15). Obtain the
displacements of a mount in its LCS with Equations (15)
and (26).

Step 8: Check the displacements of each mount in its
LCS obtained in step 7 to see which ranges the displace-
ments are located in and record them. If they are the same
as that in step 5, output the calculated results and then
stop, otherwise, go to step 6.

In some loads, the results may not converge after suffi-
cient repeat calculations due to the inappropriate values
for some stiffness and/or coordinates of the tuning points.
So interruptions in the program should be designed.

The reaction forces at each mount can be determined
by the formula (10) with the displacements of each
mount. These reaction forces are important boundary
conditions for the design of strength and fatigue life of
mount brackets, and loading conditions for fatigue
experiments of the mounts.

3.2. Solution to the Dynamic Equation of a Powertrain
Assuming the powertrain is fixed to a rigid structure, the
natural frequencies and mode shapes of a powertrain are
obtained from (Suh et al., 2003; Demic, 1990)
K - &*M|=0

[K - &/M]p=0

(27a)
(27b)

where M is the (6x6) mass matrix containing inertia
paragletgrs of _)the powertrain (Swanson et al.,, 1993);
o=[¢ ¢ ... ] the (6x6) mode matrix, in which each
column (6x1) represents translation and angle displace-
ments of the six DOFs of the powertrain with respect to

its C.G. in GCS; K is the (6x6) stiffness matrix and is a
function of the dynamic stiffness, locations and orienta-
tions of the mounts (Tao er al, 2000). The dynamic
stiffness of a mount for analyzing the natural frequencies
of the powertrain using Equation 27(a) equals the static
stiffness (the K; in Figure 2) times a dynamic-to-static
ratio of a mount, which is in the range of 1.1 to 1.6
depending on the Shore hardness of the rubber in the
mount (Shangguan and Lu, 2004).

Solution of Equation (27) leads to a set of natural
frequencies of the powertrain, f(=@/27, i=1, 2, ... 6), and
the corresponding mode vectors @= (@, Goi..., Ps: )"
When the powertrain vibrates at a natural frequency (f),
the mode kinetic energy distribution (usually defined as
the decoupling ratio) in the n(n=1,2...6) DOF of the
powertrain and i-order mode, E(n,i), is estimated from
(Demic M, 1990)

6 6
%wf¢niz My Qi ¢m‘z My Qi
1=1 =1

E(n,i)= = (28)

where @, is the nth element in the mode vector 3)[, and
m,, is the element of the mass matrix, M, in n- row and /-
column.

The response of the powertrain C.G. to the dynamic
input can be calculated by solving Equation (23). In the
frequency domain, the dynamic displacement vector of
the powertrain C.G.,, X, is expressed as

Xa(N)=(-2 ) M+Ka() (F(N+Fo() (29)

Equation (29), F(f) is assumed to be zero if only the
excitation from a rigid structure is considered. If the
excitations to the powertrain are only from torque
changes due to the output power of changes in the engine,
F,(f) is set to zero.

The dynamic forces transmitted to mount i in GCS is
then calculated by

Fid=[K:d —K:d-f'i]xd (30)
4. APPLICATION EXAMPLE

4.1. Parameters of a Generic PMS

A generic PMS consisting of four mounts and a power-
train transversely mounted is shown in Figure 3. The
Trans and Trans-rear mounts are rubber mounts. The
powertrain weights 215 Kg, and its inertia properties are
given in Table 2. The location and orientation of each
mount is listed in Tables 3 and 4, respectively. Direction
cosines are used to represent the orientation of the
mounts in LCS with respect to GCS. The static stiffness
and the coordinates of tuning points for each mount in
three directions of its LCS are shown in Table 5. For
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Figure 3. A PMS with four mounts.

Table 2. Inertia properties of a powertrain in GCS
(Kg.m?).

I Iy I Ly Iy, Ly

15.849 7.2663 12.5897 —0.7965 2.9916 0.0677

Table 3. Mount locations.

Coordinates in GCS (mm)

Mount
X Y Z
Eng —42.5 506.6 181
Trans 57 —448.3 181
Eng-front 267 22 —-146
Trans-Rear 315 -37 —209

Trans and Trans-rear mounts, the dynamic-to-static stiff-
ness ratio is 1.2 and the loss angle is set to 6 degrees from
the experimental data.

4.2. Static Displacement Results

Two loads (static or quasi-static force) along with the
powertrain weight are considered to calculate the static
deflection of a powertrain C.G.. The first load is a ‘gee’

Table 4. Mount orientations (Degree).

LCS of a GCS
Mount
mount X Y 7z
U; 0 90 90
Eng V; 90 0 90
w; 90 90 0
u; 0 90 90
Trans V; 90 0 90
w; 90 90 0
u; 34 90 56
Eng-front v, 90 0 90
w; 124 90 34
u; 45 90 135
Trans-rear Vi 90 0 90
W, 45 90 45

force acting at the powertrain C.G in vertical (Z) and
right (Y) directions of GCS, and equal to 3.5 mg and 2
mg, respectively, where m is the powertrain mass and gis
gravitational acceleration. The second load is a torque
force of 6200 N.m around the Y- axis of GCS (pitch
direction). The calculated static displacement of the
powertrain C.G., and the displacements and the reaction
forces at the four mounts are listed in Tables 6 to 9,
respectively.

Displacements of powertrain C.G. under load 1 are
shown in Table 6. It is seen that the displacement in the
X-axis, the angles around X-, Y- and Z-axis can be nearly
ignored. Since the powertrain translates only in the Y-
and Z- directions under load 1, the posture of the

Table 5. Static stiffness under the preload of powertrain weight and x coordinate of the tuning points for each mount.

Mount LCS of a Stiffness for piecewise linear (N/mm) x-coordinate of tuning points (mm)
oun

mount k, k, ks ks P D: Ps P4

u; 2000 1100 150 1100 2000 -8 -5 5 8

Eng v, 2000 550 140 550 2000 -8 -7 5 8

w; 840 340 160 640 600 -17 -13.5 2 5

u; 1500 800 80 800 1500 -9.5 =5.5 5.5 9.5

Trans v, 2000 1000 150 1000 2000 -8 -7 5 8

W 1000 400 190 190 800 -17 -13.5 3 5

u; 1200 650 160 650 1200 -19 -15 15 19

Eng-front v, 2000 700 45 700 2000 -8 -7 7 8

w; 2250 1200 95 1200 2250 -13 -9.5 9.5 12

u; 1500 600 120 600 1500 -15 —-12 12 15

Trans-rear Vi 2000 500 40 500 2000 -8 -7 7 8

w; 3000 1305 75 1305 3000 -14 -10 10 14
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Table 6. Displacements of the powertrain C.G. in GCS under load 1.

Translation displacement (mm)

Rotation angle (Deg)

X Y z

Roll (&) Pitch (6,) Yaw (6)

—0.2323 6.502 10.7852

0.0169 —0.0481 —0.0678

Table 7. Displacements and reaction forces of the four mounts under load 1.

Displacement in GCS (mm)

Reaction force in GCS (N)

Displacement in LCS (mm)

Mount
X Y Z X Y V4 »
Eng 0.2154 64989 47133 323 15244 2056.5 0.2154 64989 47133
Trans -09149  6.3813  4.8404 -73.2 21313 919.7 -0.92 63813 4.8404
Eng-front  -0.059 6.861 10.1994 299.1 308.7 1174.5 5.6545 6.8609  8.4887
Trans-rear —0.0115  6.1902 114272 —258.2 247.6 1114.4 —8.088 6.1902  8.0721
Table 8. Displacements of the powertrain C.G. in GCS under load 2.
Translation displacement (mm) Rotate angle (Deg)
X Y Z Roll (&) Pitch (6,) Yaw (&)
0.9202 —-0.5435 1.0261 —-0.2979 2.5409 0.1532

Table 9. Displacements and reaction forces of the four mounts under load 2.

Displacement in GCS (mm)

Reaction force in GCS (N)

Displacement in LCS (mm)

Mount
X Y Z X Y Z u; V; w;
Eng 7.5927 0.2838  -5.9084 3602.0 39.7 -945.3 7.5928 0.2838 -5.9084
Trans 10.1454  0.5495 -5.027 4608.1 824 -955.1 10.145 0.5495 -5.027
Eng-front -54235 -2.0162 12.617 -3133.8 —90.7 5378.2 2.5591 -2.016 13.4927
Trans-rear -8.1547 -0.7861 —12.384 -5076.3 -31.5 -5583.8 29901 -0.786 —14.5226

powertrain is almost the same as that of its static
equilibrium.

The F-Drelations of Eng and Trans mounts in the three
axial directions, and the reaction forces and the dis-
placements acting on the two mounts under load 1 are
shown in Figure 4. It is seen that the displacement of Eng
and Trans mounts in v~ and w;- directions of its LCS are
in the nonlinear range (range 4). However, the calculation
results (comparing Table 7 with Table 5) show that the
displacements of Eng-front and Trans-rear mounts in
each of its LCS are only in the linear range (range 3). It is
concluded that some of displacements of a mount in its
LCS are located in the nonlinear section, while others are
still in the linear section. The nonlinear section of Eng
and Trans mounts in v~ and w;- directions of its LCS are
used to control powertrain motion.

It is seen from Table 8 that the powertrain mainly
rotates around the Y- axis of the GCS under load 2, which
demonstrates that the posture of the powertrain under this
load is a result of rotation of the powertrain in its static
equilibrium.

The F-D relations of Eng, Trans and Trans-rear mounts
in u- or w;- direction, and the reaction forces and the
displacements acting on the three mounts under load 2
are shown in Figure 5. It is evident that the displacements
of Eng and Trans mounts in the u- axis are in the
nonlinear range (range 4 and range 5 for Eng and Trans
mounts, respectively), and the displacement of Trans-rear
mount in w;- axis is also in the nonlinear range (range 1).

The reaction forces at the four mounts listed in Tables
7 and 9 and the external loads are in equilibrium, which
verifies the calculated results of the reaction forces.
These reaction forces are important load conditions for
strength design and fatigue experiments of mount
brackets.

4.3. Dynamic Response of the Powertrain

The calculated natural frequencies and decoupling ratios
of the powertrain are given in Table 10. It is seen that
vibrations of the powertrain in bounce and pitch
directions, in which the natural frequencies of the power-
train equal to 9.3 Hz and 11.6 Hz, respectively, are almost
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Table 10. Natural frequencies and decoupling ratios of a
PMS in GCS.

Frequencies ¢ 1 735 927 1420 11.62 13.18
(Hz)
X 9040 004 055 001 674 227
Y 007 9673 0.11 209 050 0.52
D‘ﬁi"“‘ Z 051 006 99.08 029 0.06 0.00
P e, Roll 002 295 018 8592 406 687
Pitch 4.94 020 005 7.16 8699 0.66
Yaw 4.06 002 004 454 165 89.68
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Figure 6. Dynamic stiffness and loss angle of the Eng
mount.
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Figure 7. Dynamic stiffness and loss angle of the Eng-
front mount.

decoupled from other modes since the decoupling ratios
in the two directions are greater than 85%.

The excitations to a powertrain in an automotive PMS
are mainly from bounce excitation (ground excitation) in
the Z- direction and torque excitation in the pitch direc-
tion of GCS. To control vibration of the powertrain in
bounce and pitch directions, one or two mounts in the
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Figure 8. The amplitude versus response of the power-
train C.G. for PMS I under ground excitation.

PMS are usually of HEMs. If two HEMs are used in a
PMS, the peak frequencies of loss angle of the HEMs
are set to bounce and pitch frequencies of the power-
train, respectively. In the PMS shown in Figure 3, Eng
and Eng-front mounts are used for controlling bounce
and pitch vibrations, so the peak frequencies in the loss
angle of the two HEMs are set to 9 Hz and 12 Hz,
respectively. The dynamic stiffness and loss angle for
Eng and Eng-front mounts are given in Figures 6 and 7,
respectively.

If the Eng and Eng-front mounts in the PMS are
HEMs, and the dynamic stiffness and loss angle are
illustrated in Figures 6 and 7, respectively, the PMS is
defined as PMS IL If the Eng and Eng-front mounts in
PMS 11 are replaced by rubber mounts corresponding to
the rubber spring of the two HEMs, the PMS is defined as
PMS 1. The Trans and Trans-rear mounts are identical in
PMS I and PMS 1I. The loss angles of a rubber mount are
in the range of 2.5 to 12 degrees depending on the Shore
hardness of the rubber (Zhang and Shangguan, 2006).
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Figure 9. The amplitude versus frequency response of the
powertrain C.G. for PMS II under ground excitation.

4.3.1. Response to ground excitation
Dynamic amplitude versus frequency responses of the
powertrain C.G. for PMS I and PMS 1II under a displace-
ment excitation of 1.0 mm amplitude from the ground in
the vertical direction are shown in Figures 8 and 9,
respectively. It is seen from Figure 8(a) that the displace-
ment amplitude in the Z- direction reaches its maximum
at 9.3 Hz (the natural frequency of the powertrain in Z-
direction). In PMS II, the Eng mount (an HEM) is used to
control the powertrain vibration in the Z- direction, so the
maximum displacement of the powertrain C.G. in the Z-
direction is greatly reduced as shown in Figure 9(a).
Since the dynamic stiffness of an HEM is greater than
that of its rubber spring (Shangguan and Lu, 2004), the
peak frequency of the displacement in the Z-direction for
the powertrain in PMS II shifts to a little higher value
compared with the peak frequency in Figure 8(a).

As Table 10 indicates, the vibration of the powertrain
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Figure 10.The reaction force response of Eng and Eng-
front mount in PMS T under ground excitation.

in the pitch direction is coupled with the X- and roll
directions, so the amplitude of the pitch response of the
powertrain in PMS I reaches its maximum value at 8§ Hz,
11.6 Hz and 14 Hz, respectively, which corresponds to
the natural frequencies of the powertrain in the X-, pitch
and roll directions. For the same reason, the amplitude of
the powertrain response in the roll and yaw directions
reaches its maximum value at 14 Hz. It is also seen from
Figure 8(b) that the amplitude of the roll, pitch and yaw
response of the powertrain reaches its maximum value at
9.3 Hz (a natural frequency of the powertrain in Z-
direction), since the powertrain vibrates mostly in the Z-
direction under ground excitation.

The amplitude versus frequency responses (A-F
responses, for short) of the powertrain in the roll, pitch
and yaw directions for PMS II is shown in Figure 9(b). It
is seen that only one peak value occurs for the pitch and
yaw responses, and the peak frequencies correspond to
the natural frequencies in the pitch and yaw directions,
respectively. This calculated result demonstrates that the
coupling of the powertrain vibration is decreased with the
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Figure 11. The reaction force response of Eng and Eng-
front mount in PMS II under ground excitation.

use of HEMs in PMS II.

Since the excitation to the powertrain is in the vertical
direction, the powertrain angle displacements in the roll,
pitch and yaw directions for PMS I and PMS II are small
overall as Figures 8(b) and 9(b) indicate. Since the
dynamic stiffness of an HEM is greater than that of its
rubber spring, the angle displacement responses of the
powertrain in PMS II increase a little.

The A-F responses of the reaction forces at Eng and
Eng-front mount in PMS I and PMS II are illustrated in
Figures 10 and 11, respectively. It is seen that the peak
value and the amplitude of the reaction forces overall at
the mounts in PMS II are reduced greatly with the use of
HEMs. This increases the fatigue life of brackets and
decreases the booming noise inside the cab induced by
cab vibration.

4.3.2. Response to torque impulse excitation

When the output torque of the powertrain changes, a
torque impulse load is applied to the powertrain in the
pitch direction of the GCS for the PMS shown in Figure
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Figure 12. The amplitude versus frequency response of
the powertrain C.G. for PMS I under torque excitation.

3. Assuming the amplitude of the torque impulse is 200
N.m (The maximum output torque of the engine), the A-
F responses of displacements of the powertrain C.G. for
PMS I and PMS II are shown in Figures 12 and 13,
respectively. It is seen from Figures 12(b) and 13(b) that
under torque excitation in the pitch direction, the pitch
response of the powertrain reaches its maximum at the
natural frequency of the powertrain in the pitch direction
(11.6 Hz). The Eng-front mount in PMS 1I is an HEM,
and is used mainly to control the pitch vibration of the
powertrain when the output torque of the powertrain
changes. So the peak value in the pitch response in PMS
Ilis reduced greatly than that in PMS I, which demon-
strates that the resonance peak of the powertrain in the
pitch direction under the torque impulse excitation can be
reduced effectively using an HEM designed on the basis
of the proposed methods.

As Figure 12(a) indicates, the vibration of the power-
train in the pitch and X- directions is coupled, so the
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Figure 13. The amplitude versus frequency response of
the powertrain C.G. for PMS I under the torque
excitation.

response in the X- direction reaches maximum values at 8
Hz and 11.6 Hz, which corresponds to the natural
frequencies of the powertrain in the X- and pitch direc-
tions, respectively. It is shown in Figure 13(a) that the
displacement responses of the powertrain in PMS 1II in
the X-, ¥- and Z- directions reach maximum values at 8
Hz, 7.5 Hz and 11.6 Hz, respectively, which demonstrates
that the powertrain vibrates not only in the pitch direction
but also in three translation directions.

The A-F responses ofthe reaction forces at Eng and
Eng-front mounts in PMS I and PMS II are given in
Figures 14 and 15, respectively. It is seen from Figure 14
that the reaction forces at the Eng mount in the X-
direction and at the Eng-front mount in the Z- direction
reach its maximum value at 11.6 Hz (a natural frequency
of powertrain in pitch direction) under torque excitation.

Since vibrations of the powertrain in the X-and pitch
directions are coupled, it is seen from Figure 14(b) that
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Figure 14. The reaction force response of Eng and Eng-
front mount in PMS I under torque excitation.

the reaction force at the Eng-front mount in the X-
direction reaches its maximum at 8 Hz (a natural
frequency of powertrain in X- direction) under torque
excitation. As Figure 15 indicates, reaction forces at the
Eng and Eng-front mounts of PMS II in the Z- and X-
directions reach maximum values at 11.6 Hz, but the
peak value and the amplitude overall is reduced largely
with the use of HEMs in PMS 1L

5. CONCLUSIONS

A method for the dynamic analysis and design calcu-
lation of a PMS using HEM is developed using Newton’s
second law with the aim of controlling powertrain motion
and low-frequency vibration in pitch and bounce modes
in GCS. Furthermore, the method is validated by analy-
zing responses of a generic PMS with four rubber mounts
or two rubber mounts and two HEMs. In modeling a
PMS, the powertrain is modeled as a rigid body con-
nected to a rigid ground by rubber mounts and/or HEMs.
The mount in PMS is simplified as a three-dimensional
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Figure 15. The reaction force response of Eng and Eng-
front mount in PMS II under torque excitation.

spring and damping elements in each direction of its
LCS. The F-D relation of each mount in its LCS is
usually nonlinear and is simplified as piecewise linear at
five ranges in this paper. Equations for estimating dis-
placements of the powertrain C.G. and a mount in its
LCS, and reaction forces at each mount under static or
quasi-static loads are developed, and an iterative calcu-
lation method is presented. The static stiffness and
coordinates of the tuning points in the line of F-D relation
for each mount in its LCS are determined by criteria of
powertrain motion control. Calculated displacement results
of the powertrain C.G. under static or quasi-static loads
show that the powertrain motion can meet the displace-
ment limits by properly selecting the stiffness and coordi-
nates of the tuning points of each mount in its LCS with
the aid of the calculation methods proposed in this paper.

The equation for analyzing dynamic displacement
responses of the powertrain C.G. under ground and
engine shake excitations are derived using Newton’s
second law and the formulae for calculating dynamic
reaction forces at each mount are presented. Computer
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simulation results of dynamic responses of a powertrain
demonstrates that resonance peaks of the powertrain
displacements and reaction forces at mounts can be
effectively reduced with the HEMs designed on the basis
of the proposed methods.

This paper contributes to literature on powertrain
dynamics by proposing a method for estimating dis-
placements of powertrain C.G. when the F-Drelation of
each mount in its LCS is piecewise linear, and also
proposes a calculation and analysis method for reducing
resonance peaks of the powertrain in a PMS using
HEMs.
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