• Title/Summary/Keyword: Roughness length

Search Result 280, Processing Time 0.028 seconds

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Air Quality Modeling of Ozone Concentration According to the Roughness Length on the Complex Terrain (복잡지형에서의 지표면 거칠기에 따른 오존 농도 수치모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.430-439
    • /
    • 2007
  • The objective of this work is the air quality modeling according to the practical roughness length using the building information as surface boundary conditions. As accurate wind and temperature field are required to produce realistic urban air quality modeling, comparative simulations by various roughness length are discussed. The prognostic meteorological fields and air quality field over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model (MM5) and the Third Generation Community Multi-scale Air Quality Modeling System (Models-3/CMAQ), respectively. The simulated $O_3$ concentration on complex terrain and their interactions with the weak synoptic flow had relatively strong effects by the roughness length. A comparison of the three meteorological fields of respective roughness length reveals substantial localized differences in surface temperature and wind folds. Under these conditions, the ascended mixing height and weakened wind speed at night which induced the stable boundary stronger, and the difference of simulated $O_3$ concentration is $2{\sim}6\;ppb$.

Estimation on The Atmospheric Stability and Flow Characteristics of Planetary Boundary Layer in Wolryong Coastal Region (월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰)

  • Jeong, Tae-Yoon;Lim, Hee-Chang;Kim, Hyun-Goo;Jang, Moon-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.857-865
    • /
    • 2009
  • The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5$-0.2{\leq}H/L{\leq}0.2$) and stable regime (0.2

Estimation of Average Roughness Coefficients of Bocheong Stream Basin (보청천 유역의 평균조도계수 산정)

  • Jeon, Min-Woo;Lee, Hyo-Sang;Ahn, Sang-Uk;Cho, Young-Soo;Jeon, Man-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1306-1310
    • /
    • 2009
  • The roughness coefficients were estimated by the Manning's equation for the measured stage and flow velocity of Bocheong stream basin in Kum river. The relationships between the estimated roughness coefficients and the geomorphologic factors were formulated by the linear, logarithmic, exponential and power type function, thereafter correlation equations were presented. The correlation analysis was performed between the measured stream length and the basin area of Bocheong stream basin by the linear, logarithmic, exponential and power type function, and correlation equation for the stream length was given. The roughness coefficient has strong correlationship with stream slope, but low correlation coefficients with stream length and basin area. For the correlationship with the roughness coefficients and the stream slope, the logarithmic type function has the smallest correlation coefficient, on the other hand, the exponential type function has the largest correlation coefficient. For the relationship between the stream length and the basin area, the correlation coefficient of the logarithmic type function shows the smallest value, linear type function shows the largest value.

  • PDF

The Surface Roughness of Aluminium Material according to Cutting Conditions in the CNC Lathe Working (CNC 선반가공(旋盤加工)에서 절삭조건(切削條件)에 따른 알루미늄의 표면(表面)거칠기 변화(變化))

  • Kim, Tae-Wook;Son, Ki-Dong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.201-208
    • /
    • 2002
  • The machine tool which operates by hand is replacing by CNC machine tool to improve the quality of the product and the productivity in modem mechanic industry. The precision of machine part is influenced greatly the surface roughness by cutting condition of machine tool. So this study was performed to examine the aluminium surface roughness of section according to change of strength rating, nose radius, cutting speed, using live center. The results of this study are as follows; 1. In the case of 56mm diameter of test piece(length is below triple of diameter), whether establish the live center or not, doesn't influence to the surface roughness, and it is possible to make product without the live center. 2. The average surface roughness of 42mm diameter(length is quadruple of diameter) is similar to the 56mm diameter in the cutting condition of nose radius 0.8mm and cutting speed 140mm/min, but there are increases and differences in other cutting conditions. 3. In the case of test piece length more 70m/min(140m/mm) and nose radius improved greatly using the live center. 4. In the case of test piece length is quintuple of diameter, the nose radius must choose big tool and increase the cutting speed in preference live center establishment availability to improve that is surface roughness. Conclusively, if aluminum test piece length is fewer than triple of diameter, can process without establishing live center. If aluminum test piece length is more than quintuple of diameter, cutting conditions to improve surface roughness are (1) cutting speed (2) nose radius (3) whether the live center uses or not.

  • PDF

Application of Fractal Theory to Various Surfaces

  • Roh, Young-Sook;Rhee, In-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.23-28
    • /
    • 2006
  • In this study, the general theory of fractality is discussed to provide a fundamental understanding of fractal geometry applied to heterogeneous material surfaces like pavement surface and rock surface. It is well known that many physical phenomena and systems are chaotic, random and that the features of roughness are found at a wide spectrum of length scales from the length of the sample to the atomic scales. Studying the mechanics of these physical phenomena, it is absolutely necessary to characterize such multi scaled rough surfaces and to know the structural property of such surfaces at all length scales relevant to the phenomenon. This study emphasizes the role of fractal geometry to characterize the roughness of various surfaces. Pavement roughness and rock surface roughness were examined to correlate their roughness property to fractality.

Relation between Radar Backscattering Coefficients and Surface Profile Length for Bare Soil Surfaces Using Theoretical Predictions and Measurement Data (토양 표면에서의 레이더 산란 계수와 표면 거칠기 측정 길이의 관계에 대한 이론 모델과 측정 데이터의 비교)

  • Oh, Yi-Sok;Hong, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1181-1188
    • /
    • 2006
  • The radar backscattering coefficients of soil surfaces with various roughness conditions are computed at first in this paper. The roughness parameters for various surface-profile lengths are also obtained. Then, the relationship between the radar backscattering coefficients and the profile length is studied. It was shown that the effect of the profile length is negligible on the backscattering coefficient, even though the roughness parameters vary a lot with the length of the surface profile.

An Experimental Study on the Variation of Vertical Dispersion within Boundary Layer with Surface Roughness (대기 경계층 연직방향 확산의 지면 거칠기에 따른 변화에 관한 실험적 연구)

  • 박옥현;윤창옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.237-246
    • /
    • 2000
  • An experimental study has been carried out using a rotating water channel in order to investigate the effect of surface roughness on the vertical dispersion of plume within boundary layer. Dispersion measurements of tracers released from two sources with different height at neutral conditions over various rough terrain ranging from rural to urban have been performed. Various values of roughness length were simulated by combining of 4 stream velocities and 3 roughness element conditions. Dispersion measurements have also been made for rough terrain where high buildings are locally concentrated. Values of $\sigma$z increase with roughness and this tendency appears to apply both cases of with and without locally concentrated high buildings. The comparisons of the Bowne's nomogram on $\sigma$2 vs x relationship and the measurements of $\sigma$2 with roughness show good accordance in $\sigma$2 distribution at stability D class over rural, suburban and urban terrain. For constant roughness length the $\sigma$2 values of plumes from lower source height are smaller than those of plumes from higher source at short downwind distance, but this relationship becomes reverse as distance increases. Crossing appears to be made before about 2km. The value of constant I in McMullen's equation $\sigma$2=exp [I+J(In x) + K(In x)2] appears to increase with roughness length, however, the relationships between other constants and roughness have been confirmed. The values of $\sigma$2 for various downwind distances, estimated by using an equation which is employed in ISC (Industrial Source Complex) dispersion model for areas where high buildings are locally assembled, are in accordance with measurements from water channel experiments.

  • PDF

Calibration of the integrating sphere system for correcting the roughness effect in gauge block length measurement by using the Newton's rings interferometer (간섭무늬 분석을 통한 게이지 블록의 거칠기 효과 보정용 광산란장치 교정)

  • Kang C.S.;Kim J.W.;Cho M.J.;Kong H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.47-48
    • /
    • 2006
  • A roughness measuring system which comprises an integrating sphere and a stabilized laser has been fabricated with the aim of measuring the roughness correction value which is necessary in gauge block measurement by optical interferometry. To calibrate the system, a Newton's ring interferometer has been introduced. The method how to calibrate the roughness measurement system has been described.

  • PDF

A summertime near-ground velocity profile of the Bora wind

  • Lepri, Petra;Kozmar, Hrvoje;Vecenaj, Zeljko;Grisogono, Branko
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.505-522
    • /
    • 2014
  • While effects of the atmospheric boundary layer flow on engineering infrastructure are more or less known, some local transient winds create difficulties for structures, traffic and human activities. Hence, further research is required to fully elucidate flow characteristics of some of those very unique local winds. In this study, important characteristics of observed vertical velocity profiles along the main wind direction for the gusty Bora wind blowing along the eastern Adriatic coast are presented. Commonly used empirical power-law and the logarithmic-law profiles are compared against unique 3-level high-frequency Bora measurements. The experimental data agree well with the power-law and logarithmic-law approximations. An interesting feature observed is a decrease in the power-law exponent and aerodynamic surface roughness length, and an increase in friction velocity with increasing Bora wind velocity. This indicates an urban-like velocity profile for smaller wind velocities and rural-like velocity profile for larger wind velocities, which is due to a stronger increase in absolute velocity at each of the heights observed as compared to the respective velocity gradient (difference in average velocity among two different heights). The trends observed are similar during both the day and night. The thermal stratification is near neutral due to a strong mechanical mixing. The differences in aerodynamic surface roughness length are negligible for different time averaging periods when using the median. For the friction velocity, the arithmetic mean proved to be independent of the time record length, while for the power-law exponent both the arithmetic mean and the median are not influenced by the time averaging period. Another issue is a large difference in aerodynamic surface roughness length when calculating using the arithmetic mean and the median. This indicates that the more robust median is a more suitable parameter to determine the aerodynamic surface roughness length than the arithmetic mean value. Variations in velocity profiles at the same site during different wind periods are interesting because, in the engineering community, it has been commonly accepted that the aerodynamic characteristics at a particular site remain the same during various wind regimes.