Browse > Article
http://dx.doi.org/10.14191/Atmos.2016.26.1.111

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas  

Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies)
Jang, Min (Weather Information Service Engine, Hankuk University of Foreign Studies)
Yi, Chaeyeon (Weather Information Service Engine, Hankuk University of Foreign Studies)
Zo, Il-Sung (Research Institute of Radiation & Satellite, Gangneung-Wonju National University)
Kim, Bu-Yo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University)
Park, Moon-Soo (Weather Information Service Engine, Hankuk University of Foreign Studies)
Choi, Young-Jean (Weather Information Service Engine, Hankuk University of Foreign Studies)
Publication Information
Atmosphere / v.26, no.1, 2016 , pp. 111-126 More about this Journal
Abstract
In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.
Keywords
Roughness length; WISE-WRF model; wind speed; friction speed; Automatic Weather System (AWS);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hu, X., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteorol. Clim., 49, 1831-1844.   DOI
2 Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 61 pp.
3 Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteorol. Clim., 46, 1067-1079.   DOI
4 Landsberg, H. E., 1981: The Urban Climate. Academic Press, 285 pp.
5 Lee, Y.-H., and S.-U. Park, 1997: Modification of boundary layer by a change of surface roughness. J. Korean Meteorol. Soc., 33, 445-456.
6 Loridan, T., and C. S. B. Grimmond, 2012: Characterization of energy flux partitioning in urban environments: links with surface seasonal properties. J. Appl. Meteorol. Clim., 51, 219-241.   DOI
7 Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857-1864.   DOI
8 Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163-187.
9 Ng, E., C. Yuan, L. Chen, C. Ren, and J. C. Fung, 2011: Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: a study in Hong Kong. Landscape. Urban Plan., 101, 59-74.   DOI
10 Oke, T. R., 1987: Boundary Layer Climates. Methuen, Inc., 435 pp.
11 Park, S. H., J. B. Jee, and C. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topography and landuse over seoul metropolitan and surrounding areas. Atmosphere, 25, 309-322.   DOI
12 Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Clim., 46, 9, 1383-1395.   DOI
13 Priestnall, G., J. Jaafar, and A. Duncan, 2000: Extracting urban features from LiDAR digital surface models. Computers, Environment and Urban Systems, 24, 65-78.   DOI
14 Ratti, C., and P. Richens, 1999: Urban texture analysis with image processing techniques. In Computers in Building. Springer, 49-64 pp.
15 Ratti, C., S. Di Sabatino, and R. Bitter, 2006: Urban texture analysis with image processing techniques: wind and dispersion. Theoretical and Appl. Clim., 84, 77-99.   DOI
16 Raupach, M., 1992: Drag and drag partition on rough surfaces. Boundary-Lay. Meteorol., 60, 375-395.   DOI
17 Reijmer, C. H., E. van Meijgaard, and M. R. van den Broeke, 2004: Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Boundary-Lay. Meteorol., 111, 313-337.   DOI
18 Ryu, Y. H., J. J. Baik, K. H. Kwak, S. Kim, and N. Moon, 2013: Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area. Atmos. Chem. Phys., 13, 2177-2194.   DOI
19 Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteorol. Clim., 50, 1107-1128.   DOI
20 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, 113 pp.
21 Steiniger, S., T. Lange, D. Burghardt, and R. Weibel, 2008: An approach for the classification of urban building structures based on discriminant analysis techniques. Transactions in GIS, 12, 31-59.
22 Sud, Y. C., J. Shukla, and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J. Appl. Meteorol., 27, 1036-1054.   DOI
23 Voogt, J. A., and T. R. Oke, 1997: Complete urban surface temperatures. J. Appl. Meteorol., 36, 1117-1132.   DOI
24 Vukovich, F. M., 1971: Theoretical analysis of the effect of mean wind and stability on a heat island circulation characteristic of an urban complex. Mon. Weather Rev., 99, 919-926.   DOI
25 Wang, W., C. Bruyere, M. Duda, J. Dudhia, D. Gill, H.-C. Lin, J. Michalakes, S. Rizvi, and X. Zhang, 2010: Weather Research & Forecasting, ARW Version 3 Modeling System User's Guide. Mesoscale and Microscale Meteorology Division, Boulder, Co, Natl. Center. Atmos. Res., 350 pp.
26 Xiu, A., and J. E. Pleim, 2001: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteorol., 40, 192-209.   DOI
27 Yi, C., T. H. Kwon, M. S. Park, Y. J. Choi, and S. M. Ahn, 2015: A study on the roughness length spatial distribution in relation to the seoul building morphology. Atmosphere, 25, 339-351.   DOI
28 Barlag, A. B., and W. Kuttler, 1991: The significance of country breezes for urban planning. Energy Build., 15, 291-297.
29 Yoo, J., J. K. Hong, H. Kwon, J. H. Lim, and J. Kim, 2010: On estimation of zero plane displacement from singlelevel wind measurement above a coniferous forest. Korean Agric. Forest Meteorol., 12, 45-62.   DOI
30 Andre, J. C., and C. Blondin, 1986: On the effective roughness length for use in numerical three-dimensional models. Boundary-Lay. Meteorol., 35, 231-245.   DOI
31 Bornstein, R. D., 1968: Observations of the urban heat island effect in New York City. J. Appl. Meteorol., 7, 575-582.   DOI
32 Bottema, M., 1996: Roughness parameters over regular rough surfaces: Experimental requirements and model validation. J. Wind Eng. Ind. Aerod., 64, 249-265.   DOI
33 Cao, M., and Z. Lin, 2014: Impact of urban surface roughness length parameterization scheme on urban atmospheric environment simulation. J. Appl. Math., 2014, Article ID 267683, doi:10.1155/2014/267683.   DOI
34 Gal, T., and Z. Sumeghy, 2007: Mapping the roughness parameters in a large urban area for urban climate applications. Acta Clim. ET Chorol., 2007, 40-41.
35 Chen, F., S. Miao, M. Tewari, J. Bao, and H. Kusaka, 2011: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, doi:10.1029/2010JD015533.   DOI
36 Dong, Z., X. Liu, H. Wang, and X. Wang, 2003: Aeolian sand transport: a wind tunnel model. Sediment. Geol., 161, 71-83.   DOI
37 Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2011. The operational sea surface temperature and sea ice analysis (OSTIA). Remote Sens. Environ., 116, 140-158, doi:10.1016/j.rse.2010.10.017.   DOI
38 Grimmond, C. S. B., and C. Souch, 1994: Surface description for urban climate studies: a GIS based methodology. Geocarto Int., 9, 47-59.   DOI
39 Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. Clim., 38, 1262-1292.   DOI
40 Ha, K. J., A. S. Suh, and H. S. Chung, 1998: The application of satellite data to land surface process parameterization in ARPS model. J. Korean Assoc. Geog. Inform. Stud., 1, 99-108.
41 Hidalgo, J., V. Masson, and L. Gimeno, 2010: Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteorol. Clim., 49, 889-901.   DOI
42 Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev., 134, 2318-2341.   DOI