• Title/Summary/Keyword: Rotating Turbulent Flow

Search Result 146, Processing Time 0.027 seconds

Experimental Study on the Wall Jet Flow Induced by Impinging Circular Jet on Arotating Disk (충돌제트로 인한 회전원판 위의 벽제트유동에 관한 실험적 연구)

  • 강형석;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3386-3394
    • /
    • 1994
  • An experimental study has been performed on the flow over a rotating disk, where the diameter of the disk is 500 mm and the maximum vertical deviation of the upper surface is $50 \mu{m}$ for the whole range of the angular velocity up to 3400 rpm. The flow visualization experiment for the wall jet flow induced by impinging circular jet is carried out using schlieren system and measurements are made by 3-hole and 5-hole pitot tubes. Schlieren photographs show that as the rotating speed increases the wall jet flow becomes more stable and the size of the largest eddies becomes smaller. Measurements for impinging jet flow on the stationary disk verify the accuracy of the present experiment, and those for free rotating disk flow display the existence of transition region from laminar to turbulent flows. Measurements for impinging jet flow on the rotating disk exhibit the interaction between the wall jet and the viscous pumping effect, which explains the decay in size of turbulent eddies illustrated by the schlieren photographs.

Numerical Study on the Similarity between the Fully Developed Turbulent Flow in an Orthogonally Rotating Square Duct and that in a Stationary Curved Square Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관 내에서의 완전 발달된 난류 유동의 유사성에 관한 수치적 연구)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.731-740
    • /
    • 2001
  • A numerical study on the quantitative analogy between the fully developed turbulent flow in a straight square duct rotating about an axis perpendicular to that of the duct and that in a stationary curved duct of square cross-section is carried out. In order to clarify the similarity of the two flows, dimensionless parameters K(sub)TR=Re(sup)1/4/√Ro and Rossby number, Ro, in a rotating straight duct flow were used as a set corresponding to K(sub)TC=Re(sup)1/4/√λ and curvature ratio, λ, in a stationary curved duct flow so that they have the same dynamical meaning as those of the fully developed laminar flows. For the large values of Ro or λ, it is shown that the flow field satisfies the asymptotic invariance property, that is, there are strong quantitative similarities between the two flows such as flow patterns and friction factors for the same values of K(sub)TR and K(sub)TC.

Study on the Analysis of Turbulent Flow in a Rotating Square Sectioned $90^{\circ}$ Curved Duct (회전하는 정사각단면 $90^{\circ}$곡관내 난류유동에 관한 수치해석적 연구)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2206-2222
    • /
    • 1995
  • In this study, the characteristics of the three-dimensional turbulence flow in a rotating square sectioned 90.deg. bend were investigated by numerical simulation. And a dimensionless number, Coriolis force ratio, primarily subjected to the feature of the flow in the rotating 90.deg. bend was obtained as a result of one-dimensional theory. In the simulation study, low Reynolds number ASM developed by Kim(1991) in the square sectioned 180.deg. bend flow was modified in order to consider the rotational effects in the testing flows. In the near wall region of low Reynolds number, four turbulence models were employed and compared in order to find the most appropriate model for the analysis of the rotating 90.deg. bend flow. By comparison of the results with the experimental data, it is shown that low Reynolds number Algebraic Stress Model with rotating terms reflects most correctly the rotational effects. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotation affect directly both the mean motion and the turbulent fluctuations. Their actions on the mean flow are to induce a secondary motion while their effects on turbulence are to modify the pressure strain.

A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan (허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구)

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.

Measurement of Inward Turbulent Flows in a Rotating with Square Cross-Section $90^{\circ}$ Duct (회전하는 정사각단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정)

  • Kim, Dong-Chul;Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.627-632
    • /
    • 2000
  • Developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. The six orientation hot-wire technique was applied to measured the distributions of 3 mean velocities and 6 Reynolds stress components. Effects of Coriolis and centrifugal forces caused by the curvature and rotation of bend on the mean motion and turbulence structures were experimentally investigated Productive addition of Coriolis and centrifugal forces to the outward radial direction in the entrance region of bend increases the secondary flow intensity according to the rotational speeds. However, after 45 degree of bend, centrifugal force due to the rotation of bend may promote the break down of counter rotating vortex pair into multi-cellular pattern, thereby decreasing the production rate of turbulence energy and Reynolds stresses.

  • PDF

Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number (회전하는 원형단면 실린더 주위의 저 레이놀즈수 난류유동에 대한 직접수치모사)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1083-1091
    • /
    • 2005
  • Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.

Turbulent Flow through a Rotating Curved Duct with Reynolds Stress Model to Automatically Sencer the Presence of a Wall (벽면감지장치를 가지는 RSM에 의한 회전하는 곡관 내 난류유동)

  • Chun, Kun-Ho;Kim, Dong-Chul;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.473-478
    • /
    • 2000
  • In this study, the characteristics of the three-dimensional turbulent flow in a rotating square sectioned $90^{\circ}$ bend were investigated by numerical simulation and experiment. In the experimental study, the characteristics of a developing turbulent flow are measured using hot-wire anemometer to seize the rotational effects on the flow characteristics and to compare the results of computational simulation with Reynolds stress model. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

  • PDF

Large-Eddy Simulation of Turbulent Flow in a Concentric Annulus with Rotation of the Inner Cylinder (안쪽 실린더가 회전하는 동심 환형관 내 난류 유동의 대형와 모사)

  • Chung, Seo-Yoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A large-eddy simulation is performed for turbulent flow in a concentric annulus with the inner wall rotation at Re$\sub$Dh/=8900 for three rotation rates N=0.2145, 0.429 and 0.858. Main emphasis is placed on the inner wall rotation effect on near-wall turbulent structures. Near-wall turbulent structures close to the inner wall are scrutinized by computing the lower-order statistics. The anisotropy invariant map for the Reynolds stress tensor and the invariant function are illustrated to reveal the altered anisotropy in turbulent structure. Probability density functions of the splat/anti-splat process are explored to develop a sufficiently complete picture of the contributions of the flow events to turbulent production. The present numerical results show that the altered turbulent structures may be attributed to the centrifugal instability, which leads to the augmentation of sweep and ejection events.

Turbulent Couette Flow between Coaxial Cylinders with Inner Cylinder Rotating (내측원관이 회전하는 동심이중원관 사이의 난류 쿠에트 유동에 관한 연구)

  • 김광용;김진욱;조용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.540-546
    • /
    • 1992
  • Turbulent Couette flow between coaxial cylinders with inner one rotating has been investigated experimentally and numerically. The radius ratio of the coaxial cylinders is 0.43. Mean velocity and turbulent stresses have been measured by hot-wire anemometer in the range of Reynolds number based on the velocity at rotating wall and the radial distance between walls, 60,900-187,000. For the numerical computation, the Reynolds stress model has been used as a turbulence closure model. Measurements of mean velocity show that the velocity profile of wall layer largely deviates from universal logarithmic law due to the effect of streamline curvature, especially in the region near the stationary outer cylinder. The results computed with the Reynolds stress model agree well with the experimental data in the prediction of circumferential intensity of turbulent fluctuations. However, the computed level of radial intensity is much higher than the measurement. Curvature-corrected versions of the Reynolds stress model improves the prediction of turbulent intensities, but the results are not fully satisfactory.

Numerical Study of Turbulent Mass Transfer around a Rotating Stepped Cylinder (후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달의 전산해석)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2378-2383
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream the step. Main focus was placed on the correlation between turbulent fluctuation and concentration field. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with the same flow configuration.

  • PDF