DOI QR코드

DOI QR Code

Large-Eddy Simulation of Turbulent Flow in a Concentric Annulus with Rotation of the Inner Cylinder

안쪽 실린더가 회전하는 동심 환형관 내 난류 유동의 대형와 모사

  • 정서윤 (한국과학기술원 기계공학과) ;
  • 성형진 (한국과학기술원 기계공학과)
  • Published : 2004.04.01

Abstract

A large-eddy simulation is performed for turbulent flow in a concentric annulus with the inner wall rotation at Re$\sub$Dh/=8900 for three rotation rates N=0.2145, 0.429 and 0.858. Main emphasis is placed on the inner wall rotation effect on near-wall turbulent structures. Near-wall turbulent structures close to the inner wall are scrutinized by computing the lower-order statistics. The anisotropy invariant map for the Reynolds stress tensor and the invariant function are illustrated to reveal the altered anisotropy in turbulent structure. Probability density functions of the splat/anti-splat process are explored to develop a sufficiently complete picture of the contributions of the flow events to turbulent production. The present numerical results show that the altered turbulent structures may be attributed to the centrifugal instability, which leads to the augmentation of sweep and ejection events.

Keywords

References

  1. Taylor, G. I., 1923, 'Stability of a Viscous Fluids Contained Between Two Rotating Cylinders,' Phil. Trans. A, Vol. 223, p. 289 https://doi.org/10.1098/rsta.1923.0008
  2. Kaye, J. and Elgar, E. C, 1958, 'Modes of Adiabatic and Diabatic Fluid Flow in an Annulus with an Inner Rotating Cylinder,' Trans. ASME: J. Heat Transfer, Vol. 80, p. 753
  3. Yamada, Y., 1962, 'Resistance of a Flow Through an Annulus with an Inner Rotating Cylinder,' Bull. JSME, Vol. 5, p. 302 https://doi.org/10.1299/jsme1958.5.302
  4. Nouri, J. M. and Whitelaw, J. H., 1994, 'Flow of Newtonian and Non-Newtonian Fluids in a Concentric Annulus with Rotation of the Inner Cylinder,' Trans. ASME: J. Fluids Eng., Vol. 116, p. 821 https://doi.org/10.1115/1.2911856
  5. Escudier, M. P. and Gouldson, I. W., 1995, 'Concentric Annular Flow with Centerbody Rotation of a Newtonian and a Shear-Thinning Liquid,' Int. J. Heat Fluid Flow, Vol. 16, p. 156 https://doi.org/10.1016/0142-727X(95)00012-F
  6. Sharma, B. I., Launder, B. E. and Scott, C. J., 1976, 'Computation of Annular Turbulent Flow with Rotating Core Tube,' Trans. ASME: J. Fluids Eng., Dec, p. 753
  7. Torii, S. and Yang, W. J., 1994, 'Numerical Study on Turbulent Flow and Heat Transfer in Circular Couette Flows,' Numer. Heat Trans. Part A-Appl., Vol. 26, p. 321 https://doi.org/10.1080/10407789408955995
  8. Rothe, T. and Pfitzer, H., 1997, 'The Influence of Rotation on Turbulent Flow and Heat Transfer in an Annulus Between Independently Rotating Tubes,' Heat Mass Trans., Vol. 32, p. 353 https://doi.org/10.1007/s002310050132
  9. Moin, P., Shih, T. H., Driver, D. and Mansour, N. N., 1990, 'Direct Nnumerical Simulation of a Three-Dimensional Turbulent Boundary Layer,' Phys. Fluids, Vol. A2, p. 1846
  10. Coleman, G. N., Kim, J. and Le, A. T., 1996, 'A Numerical Study of Three-Dimensional Wall-Bounded Flows,' Int. J. Heat Fluid Flow, Vol. 17, p. 333 https://doi.org/10.1016/0142-727X(96)00042-2
  11. Kannepalli, C. and Piomelli, U., 2000, 'Large-Eddy Simulation of a Three-Dimensional Shear-Driven Turbulent Boundary Layer,' J. Fluid Mech., Vol. 423, p. 175 https://doi.org/10.1017/S0022112000001798
  12. Orlandi, P. and Fatica, M., 1997, 'Direct Simulations of Turbulent Flow in a Pipe Rotating about Its Axis,' J. Fluid Mech., Vol. 343, p. 43 https://doi.org/10.1017/S0022112097005715
  13. Chung, S. Y., Rhee, G. H. and Sung, H. J., 2002, 'Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow. Part 1: Flow Field,' Int. J. Heat Fluid Flow, Vol. 23, p. 426 https://doi.org/10.1016/S0142-727X(02)00140-6
  14. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model,' Phys. Fluids, Vol. A3, p. 1760
  15. Lilly, D. K., 1992, 'A Proposed Modification of the Germano Subgrid-Scale Closure Method,' Phys. Fluids, Vol. A4, p. 633 https://doi.org/10.1063/1.858280
  16. Kim, K., Baek, S. -J. and Sung, H. J., 2002, 'An Implicit Velocity Decoupling Procedure for the Incompressible Navier-Stokes Equations,' Int. J. Numer. Meth. Fluids, Vol. 38, p. 125 https://doi.org/10.1002/fld.205
  17. Lumey, J. L. and Newman, G. R., 1977, 'The Return to Isotropy of Homogeneous Turbulence,' J. Fluid Mech., Vol. 82, p. 161 https://doi.org/10.1017/S0022112077000585
  18. Moin, P. and Kim, J., 1982, 'Numerical Investigation of Turbulent Channel Flow,' J. Fluid Meek, Vol. 118, p. 341 https://doi.org/10.1017/S0022112082001116
  19. Chung, S. Y. and Sung, H. J., 2003, 'Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow. Part 2: Heat Transfer,' Int. J. Heat Fluid Flow, Vol. 24, p. 399 https://doi.org/10.1016/S0142-727X(03)00017-1
  20. Jeong, J. and Hussain, F., 1995, 'On the Identification of a Vortex,' J. Fluid Meek, Vol. 285, p. 69 https://doi.org/10.1017/S0022112095000462