• Title/Summary/Keyword: Rot

Search Result 1,759, Processing Time 0.025 seconds

Identification and Characterization of Colletotrichum Species Associated with Bitter Rot Disease of Apple in South Korea

  • Oo, May Moe;Yoon, Ha-Yeon;Jang, Hyun A;Oh, Sang-Keun
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.480-489
    • /
    • 2018
  • Bitter rot caused by Colletotrichum species is a common fruit rotting disease of apple and one of the economically important disease in worldwide. In 2015 and 2016, distinct symptoms of bitter rot disease were observed in apple orchards in five regions of South Korea. In the present study, infected apples from these regions were utilized to obtain eighteen isolates of Colletotrichum spp. These isolates were identified and characterized according to their morphological characteristics and nucleotide sequence data of internal transcribed spacer regions and glyceraldehyde-3-phosphate-dehydrogenase. Molecular analyses suggested that the isolates of Colletotrichum causing the bitter rot disease in South Korea belong to 4 species: C. siamense; C. fructicola; C. fioriniae and C. nymphaeae. C. siamense and C. fructicola belonged to Musae Clade of C. gloeosporioides complex species while C. fioriniae and C. nymphaeae belonged to the Clade 3 and Clade 2 of C. acutatum complex species, respectively. Additionally, we also found that the isolates of C. gloeosporioides species-complex were more aggressive than those in the C. acutatum species complex via pathogenicity tests. Taken together, our results suggest that accurate identification of Colletotrichum spp. within each species complex is required for management of bitter rot disease on apple fruit in South Korea.

First Report of Soft Rot by Pectobacterium carotovorum subsp. brasiliense on Amaranth in Korea

  • Jee, Samnyu;Choi, Jang-Gyu;Hong, Suyoung;Lee, Young-Gyu;Kwon, Min
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.339-341
    • /
    • 2018
  • Amaranth has the potential for good materials related to nutrients and health benefits. There are several diseases of amaranth such as leaf blight, damping-off, and root rot. As a causal agent of soft rot disease, Pectobacterium spp. could infect various plant species. In this study, we isolated the bacterial pathogen causing soft rot of amaranth in South Korea. In Gangneung, Gangwon province during 2017, amaranth plants showed typical soft rot symptoms such as wilting, defoliation and odd smell. To isolate pathogen, the macerated tissues of contaminated amaranth were spread onto LB agar plates and purified by a single colony subculture. One ml bacterial suspension of a representative isolate was injected to the stem of five seedlings of 2-week-old amaranth with a needle. Ten mM magnesium sulfate solution was used as a negative control. 16S rDNA gene and recA gene were sequenced and compared with the reference sequences using the BLAST. In the phylogenetic tree based on 16S rDNA gene and recA gene, GSA1 strain was grouped in Pcb.

Causal Fungus of Side Rot on 'Zesy002' Kiwifruit in Jeju Island, South Korea

  • Ledesma, Magda;Shin, Yong Ho;Whiteman, Sonia;Tyson, Joy;Kim, Gyoung Hee;Hong, Jeum Kyu;Zange, Birgit;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.27 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • Since the past few years, dimple rot has become one of the most serious diseases affecting Actinidia chinensis var. chinensis 'Zesy002' kiwifruit in Korea, leading to a low quality and subsequent losses of income. In the current study, the causal pathogen of side rot on 'Zesy002' kiwifruit was identified to be Botryosphaeria dothidea, a widespread pathogen that could penetrate the fruit directly without wounding. Diaporthe sp., another pathogen causing dimple rot, was isolated from infected kiwifruit. It was not able to infect fruits without wounding. Dimple-rot symptoms are known to be associated with other pathogens from the Pseudocercospora genus. In this study, B. dothidea was ratified as the causal disease agent in Jeju Island. To illustrate the pathogenicity of this fungus on 'Zesy002', further studies such as observation of infection structures of fungus may be needed.

First Report of Melon Soft Rot Disease Caused by Pectobacterium brasiliense in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;Soo-Min Hong;Seung-Yeol Lee;Jeung-Sul Han;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.310-315
    • /
    • 2023
  • In May 2021, characteristic soft rot symptoms, including soft, watery, slimy, black rot, wilting, and leaf collapse, were observed on melon plants (Cucumis melo) in Gokseong, Jeollanam-do, Korea. A bacterial strain, designated KNUB-06-21, was isolated from infected plant samples, taxonomically classified, and phylogenetically analyzed using 16S rRNA and housekeeping gene sequencing. Strain KNUB-06-21 was also examined for compound utilization using the API ID 32 GN system and strain KNUB-06-21 was identified as Pectobacterium brasiliense. Subsequent melon stem inoculation studies using strain KNUB-06-21 showed soft rot symptoms similar to field plants. Re-isolated strains shared phenotypic and molecular characteristics with the original P. brasiliense KNUB-06-21 strain. To our knowledge, ours is the first report of P. brasiliense causing melon soft rot disease in Korea.

Screening of Antagonistic Bacillus against Brown Rot in Dendrocalamus latiflorus and Preparation of Applying Bacterial Suspension

  • Fengying Luo;Hang Chen;Wenjian Wei;Han Liu;Youzhong Chen;Shujiang Li
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • The aim of this study was to isolate biocontrol bacteria that could antagonize brown rot of Dendrocalamus latiflorus, optimize the culture conditions, and develop an effective biocontrol preparation for brown rot of D. latiflorus. This study isolated a bacterium with an antagonistic effect on bamboo brown rot from healthy D. latiflorus rhizosphere soil. Morphology, molecular biology, and physiological biochemistry methods identified it as Bacillus siamensis. The following culturing media and conditions improved the inhibition effect of B. siamensis: the best culturing media were 2% sucrose, 1.5% yeast extract, and 0.7% potassium chloride; the optimal culturing time, temperature, pH, and inoculation amount were 48 h, 30℃, 6, and 20%. The optimum formula of the applying bacterial suspension was 14% sodium dodecyl benzene sulfonate emulsifier, 4% Na2HPO4·2H2O, 0.3% hydroxypropyl methylcellulose thickener, and 20% B. siamensis. The pot experiment results showed the control effect of applying bacterial suspension, diluted 1,000 times is still better than that of 24% fenbuconazole suspension. The applying bacterial suspension enables reliable control of brown rot in D. latiflorus.

Potato Soft Rot Caused by Psychrotolerant Pseudomonas sp. from Subarctic Tundra Soil

  • Sungho Woo;Yung Mi Lee;Dockyu Kim
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.399-404
    • /
    • 2023
  • Agricultural activities and the number of farms in the subarctic regions have been increasing annually after the coronavirus disease 2019 pandemic to achieve food self-sufficiency. Potatoes are vulnerable to soft rot bacteria at all stages of production, storage, and transportation. A novel bacterium, Pseudomonas sp. N3-W, isolated from Alaska tundra soil, grows at 5-25℃ and produces extracellular protease(s). N3-W caused necrotic spots (hypersensitivity) in hot pepper leaves and soft rot disease (pathogenicity) in potato tubers. The psychrotolerant N3-W caused significant soft rot symptoms on potatoes at a broad temperature range (5℃, 15℃, and 25℃). In contrast, mesophilic Pectobacterium carotovorum KACC 16999 induced severe rotting symptoms in potatoes at their optimal growth temperature of 15℃ and 25℃. However, it barely produced symptoms at 5℃, which is the appropriate storage and transportation temperature for potatoes. The results of pathogenicity testing imply that psychrotolerant soft rot pathogens from polar regions may cause severe soft rot not only during the crop growing season but also during storage and transportation. Our study indicates the possibility of new plant pathogen emergence and transmission due to the expansion of crop cultivation areas caused by permafrost thawing in response to recent polar warming.

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.

Screening of Resistance Melon Germplasm to Phytotpthora Rot caused by Phytophthora Capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.389-396
    • /
    • 2012
  • Melon (Cucumis melo) is an annual herbaceous plant of the family Cucurbitaceae. Phytophthora rot, caused by Phytophthora capsici is a serious threat to cucurbits crops production as it directly infects the host plant, and it is difficult to control because of variable pathogenicity. This study investigated the resistance of 450 accessions of melon germplasm against Phytophthora rot by inoculating the seedlings with sporangial suspension ($10^{5\;or\;6}$ zoosporangia/ml) of P. capsici. Disease incidence of Phytophthora rot was observed on the melon germplasm at 7-day intervals for 35 days after inoculation. Susceptible melon germplasm showed either severe symptoms of stem and root rot or death of the whole plant. Twenty out of 450 tested accessions showed less than 20% disease incidence, of which five accessions showed a high level of resistance against Phytopthtora rot. Five resistant accessions, namely IT119813, IT138016, IT174911, IT174927, and IT906998, scored 0% disease incidence under high inoculum density of P. capsici ($10^6$ zoosporangia/mL). We recommend that these candidate melon germplasm may be used as genetic resources in the breeding of melon varieties resistant to Phytophthora rot.

Occurrence of the Collar Rot of Water Cress (Oenanthe javanicav) Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 미나리 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Kang, Soo-Woong;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.29 no.1
    • /
    • pp.72-74
    • /
    • 2001
  • A destructive collar rot of water cress (Oenanthe javanicav) occurred in the commerical farm at Karye-myon, Uiryong-gun, Kyongsangnam-do in 2000. The causal fungus caused stem rot, crown rot, wilt or blight of water cress and the disease incidence in 3 fields ranged from 28.6 to 42.8%. White mycelia spread over tissues near the soil surface or stems, and sclerotia developed on the lesions at late season. The fungus grew well on PDA at $20^{\circ}C$ and the typical clamp connection was formed on its tough white mycelia $4.1{\sim}10.3{\mu}m$. The fungus also formed white mycelia mats and sclerotia at $20^{\circ}C$ on PDA. The sclerotia were globoid and sized $1.0{\sim}6.3{\times}1.0{\sim}5.2mm$ (av. $2.4{\sim}2.2mm$). The causal fungus of collar rot disease was identified as Sclerotium rolfsii on the basis of mycological characteristics and pathogenicity test, This is the first report on the collar rot of water cress caused by Sclerotium rolfsii in Korea.

  • PDF

Crown and Root Rot of Strawberry Caused by Neopestalotiopsis clavispora in Korea (Neopestalotiopsis clavispora에 의한 딸기 뿌리썩음병 한국 내 발생)

  • Park, Kyoungmi;Han, Inyoung;Lee, Seok-Min;Choi, Si-Lim;Kim, Min Chul;Lee, Heungsu
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.427-435
    • /
    • 2019
  • The occurrence of the crown and root rot on strawberry (Fragaria×ananassa Duch.) has been reported in greenhouses in Sancheong and Hamyang, Gyeongnam province, Korea in June, 2019. The infected plants showed browning rot of the inner crown and root, causing delayed development, lack of growth, and poor rooting. The browning rot of the inner crown and root can sometimes lead to wilting and collapsing of plants. Fungi were isolated from the symptomatic root and crown. Based on the results of morphological and phylogenetic analyses, the causal agent of the disease was identified to be Neopestalotiopsis clavispora. The fungal isolates were then used for inoculation into strawberry plants to determine the causal agent of the crown and root rot as per Koch's postulates. The inoculated strawberry plants showed the same symptoms as the originally infected plants, and the fungal pathogen re-isolated from the lesions showed the same morphological characteristics as the original pathogen. This is the first report on the occurrence of crown and root rot on strawberry (Fragaria×ananassa Duch.) caused by N. clavispora in Korea.