DOI QR코드

DOI QR Code

Potato Soft Rot Caused by Psychrotolerant Pseudomonas sp. from Subarctic Tundra Soil

  • Sungho Woo (Division of Life Sciences, Korea Polar Research Institute) ;
  • Yung Mi Lee (Division of Life Sciences, Korea Polar Research Institute) ;
  • Dockyu Kim (Division of Life Sciences, Korea Polar Research Institute)
  • Received : 2023.10.04
  • Accepted : 2023.11.01
  • Published : 2023.12.31

Abstract

Agricultural activities and the number of farms in the subarctic regions have been increasing annually after the coronavirus disease 2019 pandemic to achieve food self-sufficiency. Potatoes are vulnerable to soft rot bacteria at all stages of production, storage, and transportation. A novel bacterium, Pseudomonas sp. N3-W, isolated from Alaska tundra soil, grows at 5-25℃ and produces extracellular protease(s). N3-W caused necrotic spots (hypersensitivity) in hot pepper leaves and soft rot disease (pathogenicity) in potato tubers. The psychrotolerant N3-W caused significant soft rot symptoms on potatoes at a broad temperature range (5℃, 15℃, and 25℃). In contrast, mesophilic Pectobacterium carotovorum KACC 16999 induced severe rotting symptoms in potatoes at their optimal growth temperature of 15℃ and 25℃. However, it barely produced symptoms at 5℃, which is the appropriate storage and transportation temperature for potatoes. The results of pathogenicity testing imply that psychrotolerant soft rot pathogens from polar regions may cause severe soft rot not only during the crop growing season but also during storage and transportation. Our study indicates the possibility of new plant pathogen emergence and transmission due to the expansion of crop cultivation areas caused by permafrost thawing in response to recent polar warming.

Keywords

Acknowledgement

This work was supported by Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries (KOPRI PE23140).

References

  1. Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56: 269-288. https://doi.org/10.1146/annurev-phyto-080417-045906
  2. Godfrey, S. A. C. and Marshall, J. W. 2002. Identification of cold-tolerant Pseudomonas viridiflava and P. marginalis causing severe carrot postharvest bacterial soft rot during refrigerated export from New Zealand. Plant Pathol. 51: 155-162. https://doi.org/10.1046/j.1365-3059.2002.00679.x
  3. Gonzalez, A. J., Rodicio, M. R. and Mendoza, M. C. 2003. Identification of an emergent and atypical Pseudomonas viridiflava lineage causing bacteriosis in plants of agronomic importance in a Spanish region. Appl. Environ. Microbiol. 69: 2936-2941. https://doi.org/10.1128/AEM.69.5.2936-2941.2003
  4. Kim, D., Woo, S., Lee, J., Kim, S. and Lee, Y. M. 2022. Complete genome sequence of plant-pathogenic Pseudomonas sp. N3-W isolated from subarctic tundra soil. Korean J. Microbiol. 58: 302-304.
  5. Kim, Y.-K., Lee, S.-D., Choi, C.-S., Lee, S.-B. and Lee, S.-Y. 2002. Soft rot of onion bulbs caused by Pseudomonas marginalis under low temperature storage. Plant Pathol. J. 18: 199-203. https://doi.org/10.5423/PPJ.2002.18.4.199
  6. Mertz, C. and Benz, S. 2022. Alaska Agricultural Statistics 2022 Annual Bulletin. United States Department of Agriculture, National Agricultural Statistics Service, Northwest Regional Office, Alaska Field Office, Palmer, AK, USA, 10 pp.
  7. Ng, T. F. F., Chen, L.-F., Zhou, Y., Shapiro, B., Stiller, M., Heintzman, P. D. et al. 2014. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc. Natl. Acad. Sci. U. S. A. 111: 16842-16847. https://doi.org/10.1073/pnas.1410429111
  8. Park, K.-T., Hong, S.-M., Back, C.-G., Cho, Y.-J., Lee, S.-Y., Ten, L. N. et al. 2023. First report of Pectobacterium versatile as the causal pathogen of soft rot in kimchi cabbage in Korea. Res. Plant Dis. 29: 72-78.
  9. Scheel, M., Zervas, A., Jacobsen, C. S. and Christensen, T. R. 2022. Microbial community changes in 26,500-year-old thawing permafrost. Front Microbiol. 13: 787146.
  10. Toth, I. K., Bell, K. S., Holeva, M. C. and Birch, P. R. J. 2003. Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol. 4: 17-30. https://doi.org/10.1046/j.1364-3703.2003.00149.x
  11. Wasendorf, C., Schultz, D. L., Schmitz-Esser, S. and Peters, N. T. 2022. Genome sequences of soft rot-causing Pseudomonas isolates from spinach. Microbiol. Resour. Announc. 11: e00701-22. https://doi.org/10.1128/mra.00701-22
  12. Wu, R., Trubl, G., Tas, N. and Jansson, J. K. 2022. Permafrost as a potential pathogen reservoir. One Earth 5: 351-360. https://doi.org/10.1016/j.oneear.2022.03.010
  13. Yarzabal, L. A., Salazar, L. M. B. and Batista-Garcia, R. A. 2021. Climate change, melting cryosphere and frozen pathogens: should we worry...? Environ. Sustain. 4: 489-501. https://doi.org/10.1007/s42398-021-00184-8
  14. Zhang, C., Lin, T., Li, J., Ma, G., Wang, Y., Zhu, P. et al. 2016. First report of the melon stem rot disease in protected cultivation caused by Pseudomonas fluorescens. J. Plant Dis. Prot. 123: 247-255. https://doi.org/10.1007/s41348-016-0030-3