• Title/Summary/Keyword: Robust current control

Search Result 301, Processing Time 0.028 seconds

A Study on Digital control of Inverter for UPS based on Disturbance Observer (외란관측기를 가지는 UPS용 인버터의 디지탈제어에 관한 연구)

  • Lee, C.D.;Kim, J.S.;Choi, S.Y.;Lee, J.C.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.606-608
    • /
    • 1996
  • In this paper, a new control scheme based on deadbeat control with disturbance observer for voltage controlled Inverter system is proposed. The inverter system is modelled as the 4th-order system treating R load current variation caused by disturbance. So the disturbance observer exists in the state observer. By using the pole placement strategy, the observer estimates the state and disturbance variable of the next sampling instant. Simulation results so show that The proposed scheme has robust feature against disturbance.

  • PDF

Design of Robust Controller for DC to DC Converter (DC - DC 컨버터 구동을 위한 강인제어기 설계)

  • Kim, Tae-Woo;Kim, Min-Chan;Yoon, Seong-Sik;Kim, Hyeon-Woo;Kim, Tae-Kyu;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.995_996
    • /
    • 2009
  • This paper presents a sliding mode control method for step up DC-DC converter. For high performance control of converter, it requires the robustness between the input current and the output voltage. As a result, in spite of disturbance and parameter uncertainty, the proposed controller has the robustness to control the output voltage.

  • PDF

Sensorless Position Control of a PM Linear Synchronous Motor by Sliding Mode (슬라이딩모드 관측기를 이용한 영구자석 선형 동기전동기의 센서리스 위치제어)

  • Son, Young-Dae;No, Dong-Hun;Cho, Sung-Ho;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1154-1156
    • /
    • 2001
  • This paper presents the implementation of a positon sensorless vector control system of a PM linear synchronous motor by sliding mode observer based on TMS320F240 DSP controller. Sliding mode observer estimates the secondary velocity and position based on the measurement of current, and it shows very robust characteristic to parameter variation. Therefore, it improves the system performance deterioration caused by system parameter variations. Simulation and experimental considerations are presented to confirm the applicability of sliding mode observer to the sensorless position control of PMLSM.

  • PDF

Decoupled Control of Doubly Fed Induction Machine Fed by SVM Matrix Converter

  • Dendouga, Abdelhakim;Abdessemed, Rachid;Bendaas, Mohamed Lokmane
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.491-498
    • /
    • 2008
  • In this paper a decoupled control of a doubly-fed induction machine(DFIM) feed by a matrix converter is presented. It provides a robust regulation of the stator side active and reactive powers by the direct and quadratic components of the stator current vector, presented in a line-voltage-oriented reference frame. In this case, the stator windings are directly connected to the line grid, while the rotor windings are supplied by this later through a matrix converter controlled by a space vector modulation technique. The proposed solution is suitable for both energy generation and electrical drive applications with restricted speed variation range.

Robust control of industrial robot using back propagation algorithm and PSD (역전파 알고리즘 및 PSD를 이용한 로봇의 결실제어)

  • 이재욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.171-175
    • /
    • 2000
  • Neural networks are in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Online Compensation of Parameter Variation Effects for Robust Interior PM Synchronous Motor Drives

  • Shrestha, Rajendra L.;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.713-718
    • /
    • 2011
  • This paper presents an online voltage disturbance estimator to achieve precise torque control of IPMSMs over a high speed operating region. The proposed design has a type of state-filter based on a Luenburger-style closed loop stator current vector observer. Utilizing the frequency response plot (FRF) approach, the estimation accuracy and the parameter sensitivities are analyzed. Accurate torque control and improved efficiency are provided with the decoupling of the effect of the parameter variations. The feasibility of the presented idea is verified by laboratory experiments.

A study on the robust control considering speed characteristics for EMS system (상전도 흡인부상시스템에서의 속도특성에 따른 강인한 제어기에 대한 연구)

  • Im, D.H.;Kwon, B.I.;Hong, J.P.;Hur, J.;Jung, I.S.;Lee, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.68-70
    • /
    • 1995
  • The controller for magnetically suspended vehicles considering the speed characteristics is presented. Generally, the attraction force of magnet is determined by input current and air gap. However, when MAGLEV runs at high speed, induced eddy currents in the rail decrease the attraction force. Thus control characteristics of MAGLEV become deteriorated. Therefore, the variation of attraction force according to speed must be considered. Thus we analyzed the speed characteristics of the magnet by FEM. Also, we study on the control characteristics according to speeds, and design the controller considering the decline of levitation force using Neural Network.

  • PDF

Trajectory Control of Excavator Actuators Using IMV (IMV를 이용한 굴착기 작업장치 궤적제어)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.

An Inherent Zero-Voltage and Zero-Current-Switching Full-Bridge Converter with No Additional Auxiliary Circuits

  • Wang, Jianhua;Ji, Baojian;Wang, Hongbo;Chen, Naifu;You, Jun
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.610-620
    • /
    • 2015
  • An inherent zero-voltage and zero-current-switching phase-shifted full-bridge converter with reverse-blocking insulated-gate bipolar transistor (IGBT) or non-punch-through IGBT is proposed in this paper. This converter not only ensures that the switches in the lagging leg works at zero-current switching, but also minimizes circulating conduction loss without any additional auxiliary circuits. A 1.2 kW hardware prototype is designed, fabricated, and tested to verify the proposed topology. The control loop design procedures with small-signal models are also presented. A simple, low-cost, and robust democratic current-sharing circuit is also introduced and verified in this study. The proposed converter is a suitable alternative for compact, cost-effective applications with high-voltage input.

A Study on Driving Algorithm of Single-phase PMSM based on Proportional Resonant Current Controller (비례공진 전류제어기 기반의 단상 영구자석 동기전동기 운전에 관한 연구)

  • Seong, Uiseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.115-120
    • /
    • 2021
  • In this paper, an operating algorithm for single-phase permanent magnet synchronous motor based on PR current controller is proposed. In general, an asymmetric gap may occur depending on the shape of the rotor of single-phase PMSM, and this causes noise and vibration during high-speed operation. Therefore, in this paper, an operating algorithm for a single-phase PMSM usihng a proportional resonant current conrtoller with excellent control stability was proposed. Proportional resonant current controller has on steady state error is relatevly robust against distortion. Also, steady state error of AC input can be eleminated without complicated calculation process. The validity and availability of the proposed algorithm are verified through the experiment.