• Title/Summary/Keyword: Robot Operating System

Search Result 273, Processing Time 0.025 seconds

Design and Development of 600 W Proton Exchange Membrane Fuel Cell (600 W급 연료전지(PEMFC)의 설계 및 제작)

  • Kim, Joo-Gon;Chung, Hyun-Youl;Bates, Alex;Thomas, Sobi;Son, Byung-Rak;Park, Sam;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.

The Design and Implementation of a Network-based Stand-alone Motion System

  • Cho, Myoung-Chol;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.865-870
    • /
    • 2003
  • A motion controller has been used variously in industry such as semiconductor manufacture equipment, industrial robot, assembly/conveyor line applications and CNC equipment. There are several types of controller in motion control. One of these is a PC-based motion controller such as PCI or ISA, and another is stand-alone motion controller. The PC bus-based motion controller is popular because of improving bus architectures and GUI (Graphic User Interface) that offer convenience of use to user. There are some problems in this. The PC bus-based solution allows for only one of the form factors, so it has a poor flexibility. The overall system package size is bigger than other motion control system. And also, additional axes of control require additional slot, however the number of slots is limited. Furthermore, unwieldy and many wirings come to connect plants or I/O. The stand-alone motion controller has also this limit of axes of control and wiring problems. To resolve these problems, controller must have capability of operating as stand-alone devices that resides outside the computer and it needs network capability to communicate to each motion device. In this paper, a network-based stand-alone motion system is proposed. This system integrates PC and motion controller into one stand-alone motion system, and uses CAN (Controller Area Network) as network protocol. Single board computer that is type of 3.5" FDD form factor is used to reduce the system size and cost. It works with Windows XP Embedded as operating system. This motion system operates by itself or serves as master motion controller that communicates to slave motion controller. The Slave motion controllers can easily connect to master motion system through CAN-network.

  • PDF

A Heat Shock Simulation System for Testing Performance of EWP (EWP 성능 검사를 위한 열 충격 모사시스템)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.553-558
    • /
    • 2019
  • Global auto parts companies are making efforts to develop EWP(: Electric Water Pump) which is one of the core parts of environment friendly car. In eco-friendly automobiles, an independent cooling system is used rather than a cooling system that is linked to an internal combustion engine. Therefore, the research and development of the water pump operating separately from the engine and the related production system are being actively carried out. In order to overcome the shortcoming of EWP of PPS material suitable for injection system, G company which is a global parts company that researches and develops EWP around SUS and is in the process of developing robot-based production equipment for mass production. In this paper, a heat shock simulation system is designed and implemented that works with the robot-based production system to test the performance of the produced EWP. By using this system, it is possible to test the EWP in an virtual environment similar to the actual environment, thereby reducing the defect rate of the product. At the same time, all the data produced during the entire process for testing can be stored, which can be utilized in the future development of CPS(: Cyber Physical System) of EWP system based on big data.

Indoor autonomous driving system based on Internet of Things (사물인터넷 기반의 실내 자율주행 시스템)

  • Seong-Hyeon Lee;Ah-Eun Kwak;Seung-Hye Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.

Nonlinear variable structure system control for flexible link robot manipulators (유연성 로봇 매니퓰레이터에 대한 비선형 가변구조제어)

  • 김성태;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.280-284
    • /
    • 1997
  • In this paper, Nonlinear VSS control based on bang-bang control concept is derived under the assumption that the control input is bounded. We try to derive control algorithm which has almost same performance as the time optimal control. We focus this control scheme on the real implementation of DC motor position controller of flexible link, i.e. we obtain the switching curves from the real data of DC motor system operating under the full maximum and minimum applied voltages. State space is separated into several regions and we set different switching surfaces in each region to reduce chattering problem. The efficiency of the proposed controller is compared with PID controller and it is shown that the controller converges fast than PID controller without chattering. The hybrid controller scheme is also proposed not only to control the position of hub but also to reduce the vibration of end tip of flexible link.

  • PDF

Trends and Acquisition Strategies on Defense Unmanned Robot Core Technology (국방 무인·로봇 핵심 기술동향 및 획득전략)

  • Kye, J.E.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.3
    • /
    • pp.118-130
    • /
    • 2014
  • 전문 서비스로봇인 국방 무인 로봇은 무기체계 개발 시, 소요군의 운용개념 미확정, 국내 로봇 기술수준(TRL) 및 기술성숙도 미흡 등으로 무인체계의 소요기획 및 전력화 소요 반영이 되지 않고 장기적인 획득 대안으로 생각하고 있으나, 미국의 미래 전투체계(Future Combat System)에서 보듯이 네트워크 중심전(NCW)으로의 전장 환경변화 등 무인전투체계의 통신 및 소프트웨어(복합체계 공통운용환경(SOSCOE: System of Systems Common Operating Environment))의 중요성은 더욱 커지고 있다. 국가적으로는 국방 무인 로봇을 시장확산분야로 인식하고 있으며, 그동안 해외 도입 위주의 국방 무인 로봇 시장에 대한 중요성이 부각되고 있어, 우리나라 창조경제 발전의 견인차 역할로 무인체계 시장의 선점 및 새로운 고용시장을 창출할 수 있는 기반으로 투자를 확대하고 있다. 따라서, 본 논고를 통하여 무인체계에 대한 체계개발 활성화 방안에 기여하기 위한 선제적인 방법으로 연구개발 방향을 설정하고, 기술개발 방향 및 획득 우선순위 등 개발전략을 수립하고 그 대안을 제시하고자 한다.

  • PDF

Accuracy evaluation of the device to validate spirometer performance (진단폐활량계 성능검증을 위한 장치의 정확도 평가)

  • Lee, In-kwang;Park, Mi-Jung;Kim, Kyoung-Oak;Cha, Eun-Jong;Kim, Kyung-Ah
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1429-1430
    • /
    • 2015
  • The present study developed an air flow generator system with standard syringes usually adapted for spirometer calibration. It consisted of servo-motor, driver, linear robot, and controller operating as a whole integrated system capable of generating air flows at different speeds on two identical 3L syringes. Experiments demonstrated high accuracy in both flow and volume generation as required such that relative errors were approximately 2.1% and 0.5%, respectively.

  • PDF

Linear Decentralized Learning Control for the Multiple Dynamic Subsystems

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.153-176
    • /
    • 1996
  • The new field of learning control devleops controllers that learn to improve their performance at executing a given task, based on experience performing this task. the simplest forms of learning control are based on the same concepts as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers ina decentralized system, such as a robot with the controller for each link acting independently. The basic result of the paper is to show that stability of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized learning in the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  • PDF

Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework ($H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

FRF based Position Controller Design through System Identification for A Hydraulic Cylinder (유압실린더의 위치제어를 위한 시스템 인식을 통한 FRF 기반의 제어기 설계 방법)

  • Seo, Hyoung Kyu;Kim, Dong Hwan;Park, Jong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1113-1121
    • /
    • 2015
  • In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.