• Title/Summary/Keyword: Riemannian

Search Result 543, Processing Time 0.024 seconds

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE FIRST CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • Hwang, In-Ho;Han, Soo-Kyung;Chung, Kyung-Tae
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein 's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the first class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the cases of the second class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

Nonlinear control of a double-effect evaporator by riemannian geometric approach

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.405-410
    • /
    • 1994
  • The purpose of this paper is to present the details of design procedure of a nonlinear regulator by Riemannian geometric approach and to applied it to the case of a double-effect evaporator. A nonlinear geometric model is proposed on a direct sum space of a state vector and a control vector as well as in the previous parers by the authors. The geometric model is derived by replacing the orthogonal straight coordinate axes of a linear system on the direct sum space with the curvilinear coordinate axes. The integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the geometric model a nonlinear regulator with a performance index is designed renewedly by the procedure of optimization. The construction method of the curvilinear coordinate axes on which the nonlinear system behaves as a linear system is discussed. To apply the above regulator theory to double-effect evaporators especially to the pilot plant at the University of Alberta, a suitable nonlinear model is determined by the plant dynamics. The optimal control law is derived through the calculation of the homeomorphism. As a result it is confirmed that the regulator is effective and superior to that of the conventional control.

  • PDF

REGULARITY OF SOAP FILM-LIKE SURFACES SPANNING GRAPHS IN A RIEMANNIAN MANIFOLD

  • Gulliver, Robert;Park, Sung-Ho;Pyo, Jun-Cheol;Seo, Keom-Kyo
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.967-983
    • /
    • 2010
  • Let M be an n-dimensional complete simply connected Riemannian manifold with sectional curvature bounded above by a nonpositive constant $-{\kappa}^2$. Using the cone total curvature TC($\Gamma$) of a graph $\Gamma$ which was introduced by Gulliver and Yamada [8], we prove that the density at any point of a soap film-like surface $\Sigma$ spanning a graph $\Gamma\;\subset\;M$ is less than or equal to $\frac{1}{2\pi}\{TC(\Gamma)-{\kappa}^2Area(p{\times}\Gamma)\}$. From this density estimate we obtain the regularity theorems for soap film-like surfaces spanning graphs with small total curvature. In particular, when n = 3, this density estimate implies that if $TC(\Gamma)$ < $3.649{\pi}\;+\;{\kappa}^2\inf\limits_{p{\in}F}Area(p{\times}{\Gamma})$, then the only possible singularities of a piecewise smooth (M, 0, $\delta$)-minimizing set $\Sigma$ are the Y-singularity cone. In a manifold with sectional curvature bounded above by $b^2$ and diameter bounded by $\pi$/b, we obtain similar results for any soap film-like surfaces spanning a graph with the corresponding bound on cone total curvature.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE SECOND CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • HAN, SOO KYUNG;HWANG, IN HO;CHUNG, KYUNG TAE
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6, 7. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the second class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the case of the first class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

  • PDF

A NOTE ON SPECTRAL CHARACTERIZATIONS OF COSYMPLECTIC FOLIATIONS

  • Park, Jin-Suk;Cho, Kwan-Ho;Sohn, Won-Ho;Lee, Jae-Don
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.917-926
    • /
    • 1994
  • Let ($M, G_M, F$) be a (p+q)-dimensional Riemannian manifold with a foliation F of codimension q and a bundle-like metric $g_M$ with respect to F ([9]). Aside from the Laplacian $\bigtriangleup_g$ associated to the metric g, there is another differnetial operator, the Jacobi operator $J_D$, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum isdiscrete as a consequence of the compactness of M. The study of the spectrum of $\bigtriangleup_g$ acting on functions or forms has attracted a lot of attention. In this point of view, the present authors [7] have studied the spectrum of the Laplacian and the curvature of a compact orientable cosymplectic manifold. On the other hand, S. Nishikawa, Ph. Tondeur and L. Vanhecke [6] studied the spectral geometry for Riemannian foliations. The purpose of the present paper is to study the relation between two spectra and the transversal geometry of cosymplectic foliations. We shall be in $C^\infty$-category. Manifolds are assumed to be connected.

  • PDF

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE

  • Cao, Shunjuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.135-142
    • /
    • 2013
  • In the present paper, we discuss the rigidity phenomenon of closed minimal submanifolds in a locally symmetric Riemannian manifold with pinched sectional curvature. We show that if the sectional curvature of the submanifold is no less than an explicitly given constant, then either the submanifold is totally geodesic, or the ambient space is a sphere and the submanifold is isometric to a product of two spheres or the Veronese surface in $S^4$.

ON THE BEHAVIOR OF L2 HARMONIC FORMS ON COMPLETE MANIFOLDS AT INFINITY AND ITS APPLICATIONS

  • Yun, Gabjin
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.205-212
    • /
    • 1998
  • We investigate the behavior of $L^2$ harmonic one forms on complete manifolds and as an application, we show the space of $L^2$harmonic one forms on a complete Riemannian manifold of nonnegative Ricci curvature outside a compact set with bounded $n/2$-norm of Ricci curvature satisfying the Sobolev inequality is finite dimensional.

  • PDF

ON THE ALGEBRA OF 3-DIMENSIONAL ES-MANIFOLD

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.207-216
    • /
    • 2014
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to study the algebraic geometric structures of 3-dimensional $^*g-ESX_3$. Particularly, in 3-dimensional $^*g-ESX_3$, we derive a new set of powerful recurrence relations in the first class.